Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T19:10:22.228Z Has data issue: false hasContentIssue false

Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis

Published online by Cambridge University Press:  08 March 2007

Véronique Coxam*
Affiliation:
Groupe Ostéoporose, U3M, INRA Theix, 63 122 Saint-Genès Champanelle, France
*
*Corresponding author: Dr Véronique Coxam, fax +33 473 62 46 38, email coxam@clermont.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If the primary role of diet is to provide sufficient nutrients to meet the metabolic requirements of an individual, there is an emerging rationale to support the hypothesis that, by modulating specific target functions in the body, it can help achieve optimal health. Regarding osteoporosis prevention, since Ca is most likely to be inadequate in terms of dietary intake, every strategy targeting an improvement in Ca absorption is very interesting. Actually, this process may be susceptible to manipulation by fermentable substrates. In this light, inulin-type fructans are very interesting, even if we need to gather more data targeting bone metabolism before health professionals can actively advocate their consumption to prevent senile osteoporosis. Besides targeting the prevention of postmenopausal osteoporosis, inulin-type fructans still remain a source for putative innovative dietary health intervention. Indeed, given in combination with isoflavones, they may have a potential for maintaining or improving the bone mass of human subjects, by modulating the bioavailability of phyto-oestrogens.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2005

References

Albright, F & Reifenstein, EC (1948) Metabolic bone disease; osteoporosis. In The Parathyroid Glands and Metabolic Bone Disease, pp. 145204 [Albright, F and Reifenstein, EC, editors]. Baltimore: Williams & Wilkins.Google Scholar
Alekel, DL, Germain, A St, Peterson, CT, Hanson, KB, Stewart, JW & Toda, T (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72, 844852.CrossRefGoogle ScholarPubMed
Aloia, JF, Vaswani, A, Yeh, JK, Ross, PL, Flaster, E & Dilmanian, FA (1994) Calcium supplementation with and without hormone replacement therapy to prevent postmenopausal bone loss. Ann Intern Med 120, 97103.CrossRefGoogle ScholarPubMed
Anderson, JJB, Rondano, P & Holmes, A (1996) Nutrition, life style and quality of life. Scand J Rheumatol 25, Suppl., 6574.CrossRefGoogle Scholar
Andon, M, Lloyd, T & Matkovic, V (1994) Supplemental trials with Ca citrate malate: evidence in favour of increasing the Ca RDA during childhood and adolescence. J Nutr 14, 17S.Google Scholar
Avioli, LV & Lindsay, R (1990) The female osteoporotic syndrome (s). In Metabolic Bone Disease and Clinically Related Disorders, pp. 397451 [Avioli, LV and Krane, SM, editors]. Philadelphia: WB Saunders Company.Google Scholar
Axelson, M, Kirk, DN, Farrant, RD, Cooley, G, Lawson, AM & Setchell, KDR (1982) The identification of the weak oestrogen equol (7-hydroxy-3-(4'-hydroxyphenyl)chroman) in human urine. Biochem J 201, 353357.CrossRefGoogle Scholar
Baran, D, Sorenson, A, Grimes, J, Lew, R, Karellas, A, Johnston, B & Roche, J (1990) Dietary modification with dairy products for preventing vertebral bone loss in premenopausal women: a three year prospective study. J Clin Endocrinol Metab 70, 264270.CrossRefGoogle ScholarPubMed
Bendich, A, Leader, S & Muhuri, P (1999) Supplemental Ca for the prevention of hip fracture: potential health economic benefits. Clin Ther 21, 10581072.CrossRefGoogle Scholar
Beynen, AC, Baas, JC, Hoekemeijer, PE, Kappert, HJ, Bakker, MH, Koopman, JP & Lemmens, AG (2002) Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. J Anim Physiol Anim Nutr 86, 298305.CrossRefGoogle ScholarPubMed
Bonjour, JP & Rizzoli, R (1996) Bone acquisition in adolescence Osteoporosis. In Osteoporosis, pp. 445476 [Marcus, R, Feldman, D and Kelsey, J, editors]. San Diego: Academic Press.Google Scholar
Bonjour, JP, Carrie, AL, Ferrari, S, Clavien, H, Slosman, D & Theintz, G (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double blind, placebo-controlled trial. J Clin Invest 99, 12871294.CrossRefGoogle ScholarPubMed
Brommage, R, Binacua, C, Antille, S & Carrié, AL (1993) Intestinal Ca absorption in rats is stimulated by dietary lactulose and other resistant sugars. J Nutr 123, 21862194.Google ScholarPubMed
Cadogan, J, Eastell, R, Jones, N & Barker, ME (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. Br Med J 315, 12551260.CrossRefGoogle ScholarPubMed
Cashman, KD (2002) Calcium intake, Ca bioavailability and bone health. Br J Nutr 87, Suppl., S169S177.CrossRefGoogle ScholarPubMed
Cashman, KD (2003) Prebiotics and Ca bioavailability. Curr Issues Intest Microbiol 4, 2132.Google Scholar
Chan, GM, Hoffman, K & McMurry, M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126, 551556.CrossRefGoogle Scholar
Chapuy, MC, Arlot, ME, Duboeuf, F, Brun, J, Crouzet, B, Anaud, S, Delmas, PD & Meunier, PJ (1992) Vitamin D3 and Ca to prevent hip fractures in the elderly women. N Engl J Med 327, 16371642.CrossRefGoogle Scholar
Chapuy, MC, Arlot, ME, Delmas, PD & Meunier, PJ (1994) Effect of Ca and cholecalciferol treatment for three years on hip fractures in elderly women. Br Med J 308, 10811082.CrossRefGoogle Scholar
Chevalley, T, Rizzoli, R, Nydegger, V, Slosman, D, Rapin, CH, Michel, JP, Vasey, H & Bonjour, JP (1994) Effects of Ca supplements on femoral bone mineral density and vertebral fracture rate in vitamin D replete elderly patients. Osteoporos Int 4, 245252.CrossRefGoogle ScholarPubMed
Chonan, O & Watanuki, M (1996) The effect of 6'-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary Ca. Int J Vitam Nutr Res 66, 244249.Google Scholar
Chonan, O, Matsumoto, K & Watanuki, M (1995) Effect of galactooligosaccharides on Ca absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59, 236239.CrossRefGoogle Scholar
Consensus Development Conference (1993) Diagnosis prophylaxis and treatment of osteoporosis. J Am Med Assoc 94, 646650.Google Scholar
Consensus Development Statement (1997) Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 7, 16.CrossRefGoogle Scholar
Cooper, C, Campion, G & Melton, LJ (1992) Hip fractures in the elderly. A world wide projection. Osteoporos Int 2, 285289.CrossRefGoogle ScholarPubMed
Coudray, C, Bellanger, J, Castiglia-Delavaud, C, Rémésy, C, Vermorel, M & Rayssiguier, Y (1997) Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of Ca, magnesium, iron, and zinc in healthy young men. Eur J Clin Nutr 151, 375380.CrossRefGoogle Scholar
Coudray, C, Tressol, JC, Gueux, E & Rayssiguier, Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of Ca and magnesium in rats. Eur J Nutr 42, 9198.CrossRefGoogle ScholarPubMed
Coxam, V & Horcajada, MN (2004) Prevention nutritionnelle de l'ostéoporose, pp. 1166. Paris: Lavoisier editions.Google Scholar
Cumming, RG (1990) Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int 47, 194201.CrossRefGoogle ScholarPubMed
Cumming, RG & Nevitt, MC (1997) Calcium for prevention of osteoporotic fractures in postmenopausal women. J Bone Miner Res 12, 13211329.CrossRefGoogle ScholarPubMed
Cumming, RG, Cummings, SR, Nevitt, MC, Scott, J, Ensrud, KE, Vogt, TM & Fox, K (1997) Calcium intake and fracture risk: results from the study of osteoporotic fractures. Am J Epidemiol 145, 926934.CrossRefGoogle ScholarPubMed
Cummings, SR, Kelsey, JL, Nevitt, MC & O'Dowd, KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7, 178208.CrossRefGoogle ScholarPubMed
Dalais, FS, Rice, GE, Bell, RJ, Murkies, AL, Medley, G, Staruss, BJG & Wahlqvist, ML (1998) Dietary soy supplementation increases vaginal cytology maturation index and bone mineral content in postmenopausal women. Am J Clin Nutr 68, Suppl. 1518S.Google Scholar
Dawson-Hughes, B (1991) Calcium supplementation and bone loss: a review of controlled clinical trials. Am J Clin Nutr 54, 274S280S.CrossRefGoogle ScholarPubMed
Dawson-Hughes, B, Dallal, GE, Krall, A, Sadowki, L, Sahyoun, N & Tannenbaum, S (1990) A controlled trial of the effect of Ca supplementation on bone density in post-menopausal women. N Engl J Med 323, 878883.CrossRefGoogle Scholar
Dawson-Hughes, B, Harris, SS, Krall, EA & Gerard, ED (1997) Effect of Ca and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337, 670676.CrossRefGoogle ScholarPubMed
Delzenne, N, Aertssens, J, Verplaetse, H, Roccaro, M & Roberfroid, M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci 57, 15791587.CrossRefGoogle ScholarPubMed
Devine, A, Criddle, RA, Dick, IM, Kerr, DA & Prince, RL (1995) A longitudinal study of the effect of sodium and Ca intakes on regional bone density in postmenopausal women. Am J Clin Nutr 62, 740745.CrossRefGoogle ScholarPubMed
Eaton, SB & Nelson, DA (1991) Calcium in evolutionary perspective. Am J Clin Nutr 54, 281S287S.CrossRefGoogle ScholarPubMed
Elders, PJ, Netelembos, JC, Lips, P, Van Ginkel, FC, Khoe, E, Leewenkamp, OR, Hackeng, WH & Van der, Stelt (1994) Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. J Clin Endocrinol Metab 73, 533540.CrossRefGoogle Scholar
Ellegärd, L, Andersson, H & Bosaeus, I (1997) Inulin and oligofructose do not influence the absorption of cholesterol, and the excretion of cholesterol, Fe, Ca, Mg and bile acids but increases energy excretion in man. A blinded controlled cross-over study in ileostomy subjects. Eur J Clin Nutr 51, 15.CrossRefGoogle ScholarPubMed
Franck, A (1998) Prebiotics stimulate Ca absorption: a review. Milchwissenschaft 53, 427429.Google Scholar
Gibson, G & Roberfroid, M (1995) Dietary modulation of the human colonic microflora: introducing the concept of prebiotics. J Nutr 125, 14011412.CrossRefGoogle Scholar
Griffin, IJ, Davila, PM & Abrams, SA (2002) Non-digestible oligosaccharides and Ca absorption in girls with adequate Ca intakes. Br J Nutr 87, S187S191.CrossRefGoogle Scholar
Griffin, IJ, Hicks, PMD, Heaney, RP & Abrams, SA (2003) Enriched chicory inulin increases Ca absorption mainly in girls with lower Ca absorption. Nutr Res 23, 901909.CrossRefGoogle Scholar
Heaney, RP (1996) Nutrition and risk for osteoporosis. In Osteoporosis pp. 483509 [Marcus, R, Feldman, D and Kelsey, J, editors]. San Diego: Academic Press.Google ScholarPubMed
Heaney, R (1999) Aging and Ca balance. In The Aging Skeleton, pp. 1926 [Rosen, C, Glowacki, J and Bilezikian, JP, editors]. San Diego: Academic Press.CrossRefGoogle Scholar
Heaney, RP (2003) Long-latency deficiency disease: insights from Ca and vitamin D. Am J Clin Nutr 78, 912919.CrossRefGoogle Scholar
Hidaka, H, Hirayama, M, Tokunaga, T & Eida, T (1990) The effects of undigestible fructooligosaccharides on intestinal microflora and various physiological functions on human health. Adv Exp Med Biol 270, 105117.CrossRefGoogle ScholarPubMed
Holbrook, TL, Barrett-Connor, E & Windgard, DL (1988) Dietary Ca and risk of hip fracture: 14 year prospective population study. Lancet ii, 331335.Google Scholar
Holloway, L, Moynihan, S, Kent, K, Hsu, AR & Friedlander, AL (2004) Effects of oligofructose enriched inulin on mineral absorption and markers of bone turnover in postmenopausal women Am J Clin Nutr (in press).Google Scholar
INCA (2000) Enquête INCA individuelle et nationale sur les consommations alimentaires, pp. 1158 [Volatier, JL, coordonnateur]. Paris: Editions Tec & Doc.Google Scholar
Johnston, CC, Miller, JZ, Slemenda, CW, Reister, TK, Hui, S, Christian, JC & Peacock, M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327, 8287.CrossRefGoogle ScholarPubMed
Kanis, J, Johnell, O, Gullborg, B, et al. (1992) Evidence for efficacy of drugs affecting bone metabolism in preventing hip fractures. Br Med J 305, 11241128.CrossRefGoogle Scholar
Kruger, MC, Brown, KE, Collett, G, Layton, L & Schollum, LM (2003) The effect of fructooligosaccharides with various degrees of polymerisation on Ca bioavailability in the growing rat. Exp Biol Med 228, 683688.CrossRefGoogle Scholar
Lee, WTK, Leung, SSF, Lui, SSH & Lau, J (1993) Relationship between long term Ca intake and bone mineral content of children aged from birth to 5 years. Br J Nutr 70, 235248.CrossRefGoogle ScholarPubMed
Lee, WTK, Leung, SSF, Wang, SH, Xu, YC, Zeng, WP, Lau, J, Oppenheimer, SJ & Cheng, JC (1994) Double blind, controlled Ca supplementation and bone mineral accretion in children accustomed to a low-Ca diet. Am J Clin Nutr 60, 744750.CrossRefGoogle Scholar
Levrat, MA, Rémésy, C & Demigné, C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121, 17301737.Google ScholarPubMed
Ling, X, Aimin, L, Xine, Z, Xiaoshu, C & Cummings, S (1996) Very low rates of hip fracture in Beijing, People's Republic of China. Am J Epidemiol 144, 901907.CrossRefGoogle Scholar
Lloyd, T, Andon, MB, Rollings, N, Martel, JK, Landis, JR, Demers, LM, Eggli, DF, Kieselhorst, & Kulin, HE (1993) Calcium supplementation and bone mineral density in adolescent girls. J Am Med Assoc 270, 841844.CrossRefGoogle ScholarPubMed
Lombardi-Boccia, G, Aguzzi, A, Cappelloni, M, Di Lullo, G & Lucarini, M (2003) Total-diet study: dietary intakes of macro elements and trace elements in Italy. Br J Nutr 90, 11171121.CrossRefGoogle ScholarPubMed
Looker, AC (2003) Interaction of science, consumer practices and policy: Ca and bone health as a case study. J Nutr 133, 1987S1991S.CrossRefGoogle Scholar
Lopez, HW, Coudray, C, Levrat-Verny, MA, Feillet-Coudray, C, Demigné, C & Rémésy, C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem 11, 500508.CrossRefGoogle ScholarPubMed
Lutz, T & Scharrer, F (1991) The effect of SCFA on Ca absorption by the rat colon. Exp Physiol 76, 615618.CrossRefGoogle Scholar
Lydeking-Olsen, E, Jensen, JBE, Setchell, KDR, Damhus, M & Erdman, JW (2002) Isoflavone-rich soymilk prevents bone-loss in the lumbar spine of postmenopausal women. A 2 year study. J Nutr 132, 581S.Google Scholar
MacDonald, HM, New, SA, Golden, MHN, Campbell, MK & Reid, D (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of Ca, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 155165.CrossRefGoogle Scholar
Mathey, J, Katicoulibali, S, Puel, C, Bennetau, C, Lebecque, P, Davicco, MJ, Horcajada, MN, Garel, JM & Coxam, V (2003) Dietary fructooligosaccharides improve soy-osteopenia prevention in the ovariectomised rat. J Bone Miner Res 18, Suppl., S266.Google Scholar
Matkovic, V, Kostial, K, Simonovic, Buzina R, Brodarec, A & Nordin, BE (1979) Bones status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 32, 540549.CrossRefGoogle ScholarPubMed
Matkovic, V, Fontana, D, Tominac, C, Goel, P & Chesnut, CH (1990) Factors that influence peak bone mass formation: a study of Ca balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 52, 878888.CrossRefGoogle ScholarPubMed
Mertz, W (2000) Three decades of dietary recommendations. Nutr Rev 58, 324331.CrossRefGoogle ScholarPubMed
Miksicek, RJ (1993) Commonly occurring flavonoids have estrogenic activity. Mol Pharmacol 44, 3743.Google ScholarPubMed
Morabito, N, Crisafulli, A, Vergara, C, et al. (2002) Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res 17, 19041912.CrossRefGoogle Scholar
Morohashi, T, Sano, T, Ohta, A & Yamada, S (1998) True Ca absorption in the intestine is enhanced by fructooligosaccharides feeding in the rat. J Nutr 128, 18151818.CrossRefGoogle Scholar
National Center for Health Statistics (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 19881994. Vital and Health Statistics 1. DHHS Publication no. (PHS) 94–1308. Hyattsville: NCHS.Google Scholar
Nelson, ME, Fisher, EC, Dilmanian, FA, Dallal, GE & Evans, WJ (1991) A 1-y walking program and increased dietary Ca in postmenopausal women: effects on bone. Am J Clin Nutr 53, 13041311.CrossRefGoogle Scholar
Ohta, A, Osakabe, N, Yamada, K, Saito, Y & Hidaka, H (1993) Effect of fructooligosaccharides and other saccharides on Ca, Mg and P absorption in rats. J Jpn Soc Nutr Food Sci 46, 123129.CrossRefGoogle Scholar
Ohta, A, Baba, S, Takizawa, T & Adachi, T (1994a) Effects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model. J Nutr Sci Vitaminol 40, 171180.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Takizawa, T, Inaba, H, Adachi, T & Kimura, S (1994b) Effects of fructooligosaccharides on the absorption of magnesium and Ca by cecectomized rats. Int J Vitam Nutr Res 64, 316323.Google ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Adachi, T, Sakata, T & Sakaguchi, EI (1995a) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructo-oligosaccharides. J Nutr 125, 24172424.CrossRefGoogle Scholar
Ohta, A, Ohtsuki, M, Baba, S, Takizawa, T, Adachi, T & Kimura, S (1995b) Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats. J Nutr Sci Vitaminol 41, 281291.CrossRefGoogle ScholarPubMed
Ohta, A, Motohashi, K, Ohtsuki, M, Hirayama, M, Adachi, T & Sakuma, K (1998a) Dietary fructooligosaccharides change the intestinal mucosal concentration of calbindin-D9K in rats. J Nutr 128, 934939.CrossRefGoogle Scholar
Ohta, A, Ohtsuki, M, Baba, S, Hirayama, M & Adachi, T (1998b) Comparison of the nutritional effects of fructo-oligosaccharides of different sugar chain lengths in rats. Nutr Res 18, 109120.CrossRefGoogle Scholar
Ohta, A, Ohtsuki, M, Hosono, A, Adachi, T, Hara, H & Sakata, T (1998c) Dietary fructooligosaccharides prevent osteopenia after gastrectomy in rats. J Nutr 128, 106110.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Uehara, M, Hosono, A, Hirayama, M, Adachi, T & Hara, H (1998d) Dietary fructooligosaccharides prevent postgastrectomy anemia and osteopenia in rats. J Nutr 128, 485490.CrossRefGoogle ScholarPubMed
Ohta, A, Uehara, M, Sakai, K, Takasaki, M, Adlercreutz, H, Morohashi, T & Ishimi, Y (2002) A combination of dietary fructooligosaccharides and isoflavones conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr 132, 20482054.CrossRefGoogle ScholarPubMed
Polley, KJ, Nordin, BEC, Baghurst, PA & Walker, CJ (1987) Effect of Ca supplementation on forearm bone mineral content in postmenopausal women: a prospective sequential controlled trial. J Nutr 117, 19291935.CrossRefGoogle Scholar
Potter, SM, Baun, JA, Teng, H, Stillman, RJ, Shay, NF & Erdman, JW (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68, 13751379.CrossRefGoogle ScholarPubMed
Prentice, A (1997) Is nutrition important in osteoporosis? Proc Nutr Soc 56, 357367.CrossRefGoogle ScholarPubMed
Prince, R, Devine, A, Dick, I, Criddle, A, Kerr, D, Kent, N, Price, R & Randell, A (1995) The effects of Ca supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 10, 10681075.CrossRefGoogle Scholar
Recker, RR, Hinders, S, Davies, KM, Heaney, RP, Stegman, MR, Lappe, JM & Kimmel, DB (1996) Correcting Ca nutritional deficiency prevents spine fractures in elderly women. J Bone Miner Res 11, 19611996.CrossRefGoogle Scholar
Reid, DM & New, SA (1997) Nutritional influences on bone mass. Proc Nutr Soc 56, 977987.CrossRefGoogle ScholarPubMed
Reid, IR, Ames, RW, Evans, MC, Gamble, GD & Sharpe, SJ (1993) Effect of Ca supplementation on bone loss in postmenopausal women. N Engl J Med 328, 460464.CrossRefGoogle Scholar
Reid, IR, Ames, RW & Evans, MC (1995) Long-term effects of Ca supplements on bone loss and fractures in postmenopausal women: a randomized controlled trial. Am J Med 98, 331335.CrossRefGoogle Scholar
Rémésy, C, Levrat, MA, Gamet, L & Demigné, C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary Ca level. Am J Physiol 264, G855G862.Google Scholar
Report from the European Community (1999). Building strong bones and preventing fractures. Summary report on osteoporosis in the European Community – Action for prevention. Brussels: European Commission.Google Scholar
Rico, H, Revilla, M, Villa, LF, Alvarez, de, Buergo, M & Arribas, I (1994) Longitudinal study on the effect of Ca pidolate on bone mass in eugonadal women. Calcif Tissue Int 54, 477480.CrossRefGoogle Scholar
Riis, B, Thompsen, K & Christiansen, C (1987) Does Ca supplementation prevent postmenopausal bone loss? N Engl J Med 316, 173177.CrossRefGoogle Scholar
Roberfroid, M (1993) Dietary fibers, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33, 103148.CrossRefGoogle ScholarPubMed
Roberfroid, M (1997) In Dietary Fiber in Health and Disease, pp. 211219 [Kritchevsky, D and Bonfield, C, editors]. New York: Plenum Press.CrossRefGoogle Scholar
Roberfroid, M (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87, Suppl., S139S143.CrossRefGoogle ScholarPubMed
Roberfroid, M, Van Loo, J & Gibson, G (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128, 1119.CrossRefGoogle ScholarPubMed
Roberfroid, MB, Cumps, J & Devogelaer, JP (2002) Dietary chicory inulin increases whole-body mineral density in growing male rats. J Nutr 132, 35993602.Google ScholarPubMed
Scholz-Ahrens, K & Schrezenmeier, J (2002) Inulin, oligofructose and mineral metabolism – experimental data and mechanism. Br J Nutr 87, Suppl., S179S186.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, K, Schaafsma, G, Van den Heuvel, EGHM & Schrezenmeier, J (2001) Effects of prebiotics on mineral metabolism. Am J Clin Nutr 73, Suppl. 459S464S.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, K, Açil, Y & Schrezenmeier, J (2002) Effect of oligofructose or dietary Ca on repeated Ca and phosphorus balances, bone mineralisation and trabecular structure in ovariectomized rats. Br J Nutr 88, 365377.CrossRefGoogle ScholarPubMed
Schulz, AGM, Von Amelsvoort, JMM & Beynen, AC (1993) Dietary native resistant starch but not retrograded resistant starch raises magnesium and Ca absorption in rats. J Nutr 123, 17241731.CrossRefGoogle ScholarPubMed
Setchell, KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68, Suppl., 1333S1346S.Google ScholarPubMed
Setchell, KDR & Lydeking-Olsen, E (2003) Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr 78, Suppl., 593S609S.CrossRefGoogle Scholar
Setchell, KDR, Brown, NM & Lydeking-Olsen, E (2002) The clinical importance of the metabolite equol. A clue to the effectiveness of soy and its isoflavones. J Nutr 132, 35773584.CrossRefGoogle Scholar
Slemenda, CW, Reister, TK, Peacock, M & Johnston, CC (1993) Bone growth in children following the cessation of Ca supplementation. J Bone Miner Res 8, S154.Google Scholar
Smith, EL, Gilligan, C, Smith, PE & Sempos, CT (1989) Calcium supplementation and bone loss in middle-aged women. Am J Clin Nutr 50, 833842.CrossRefGoogle ScholarPubMed
Taguchi, A, Otha, A, Abe, M, Baba, S, Ohtsuki, M, Takizawa, T, Yuda, Y & Adachi, T (1994) The influence of fructooligosaccharides on the bone of model rats with ovariectomized osteoporosis. Sci Rep Meija Seika Kaisha 33, 3443.Google Scholar
Tahiri, M, Tressol, JC, Arnaud, J, et al. (2003) Effect of short-chain fructooligosaccharides on intestinal Ca absorption and Ca status in postmenopausal women a stable-isotope study. Am J Clin Nutr 77, 449457.CrossRefGoogle ScholarPubMed
Takahara, S, Morohashi, T, Sano, T, Ohta, A, Yamada, S & Sasa, R (2000) Fructooligosaccharide consumption enhances femoral bone volume and mineral concentration in rats. J Nutr 130, 17921795.CrossRefGoogle ScholarPubMed
Teuri, U, Kärkkäinen, M, Lamberg-Allardt, C & Korpela, R (1999) Addition of inulin to breakfast does not acutely affect serum ionized Ca and parathyroid hormone concentrations. Ann Nutr Metab 43, 356364.CrossRefGoogle Scholar
Trinidad, TP, Wolever, TMS & Thompson, LU (1996) Effect of acetate and propionate on Ca absorption from the rectum and distal colon of humans. Am J Clin Nutr 63, 574578.CrossRefGoogle Scholar
Uehara, M, Ohta, A, Sakai, K, Suzuki, K, Watanabe, S & Adlercreutz, H (2001) Dietary fructooligosaccharides modify intestinal bioavailability of a single dose of genistein and daidzein and affect their urinary excretion and kinetics in blood of rats. J Nutr 131, 787795.CrossRefGoogle ScholarPubMed
US Department of Agriculture (1999) Supplementary data tables, USDA's 19941996. Continuing Survey Research Group BHNRC, Agricultural Research Service.Google Scholar
US Department of Health and Human Services (2000) Healthy People 2010. Understanding and Improving Health and Objectives for Improving Health, 2nd ed. Washington, DC: US Government Printing Office.Google Scholar
Van den Heuvel, EGHM, Schaafsma, G, Muys, T & Van Dokkum, W (1998) Nondigestible oligosaccharides do not interfere with Ca and nonheme-iron absorption in young, healthy men. Am J Clin Nutr 67, 445451.Google ScholarPubMed
Van den Heuvel, EGHM, Muys, T, Van Dokkum, W & Schaafsma, G (1999a) Oligofructose stimulates Ca absorption in adolescents. Am J Clin Nutr 69, 544548.Google ScholarPubMed
Van den Heuvel, EGHM, Muys, T, Van Dokkum, W & Schaafsma, G (1999b) Lactulose stimulates Ca absorption in postmenopausal women. J Bone Miner Res 7, 12111216.CrossRefGoogle Scholar
Van den Heuvel, EGHM, Schoterman, MH & Muijs, T (2000) Transgalactooligosaccharides stimulate Ca absorption in postmenopausal women. J Nutr 130, 29382942.Google ScholarPubMed
Van Dokkum, W (1995) The intake of selected minerals and trace elements in European countries. Nutr Res Rev 8, 271302.CrossRefGoogle ScholarPubMed
Van Loo, J, Coussement, P, De Leenheer, L, Hoebregs, H & Smits, G (1995) Inulin and oligofructose in the western diets. CRC Crit Rev Food Sci Nutr 35, 525552.CrossRefGoogle Scholar
Weaver, CM (2000) The growing years and prevention of osteoporosis in later life. Proc Nutr Soc 59, 303306.Google ScholarPubMed
Weaver, CM & Liebman, M (2002) Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis. Br J Nutr 88, Suppl., S225S232.CrossRefGoogle ScholarPubMed
Welten, DC, Kemper, HC, Post, GB & Van Staveren, WA (1995) A meta-analysis of the effect of Ca intake on bone mass in young and middle aged females and males. J Nutr 125, 28022813.Google Scholar
Xu, X, Wang, HJ, Murphy, PA, Cook, L & Hendrich, S (1994) Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr 124, 825832.CrossRefGoogle ScholarPubMed
Younes, H, Demigné, C & Rémésy, C (1996) Acidic fermentation in the caecum and magnesium in the large intestine of the rat. Br J Nutr 75, 301314.CrossRefGoogle ScholarPubMed
Younes, H, Coudray, C, Bellanger, J, Demigné, C, Rayssiguier, Y & Rémésy, C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on Ca and magnesium balance in rats. Br J Nutr 86, 479485.CrossRefGoogle ScholarPubMed
Zafar, T, Weaver, C, Zhao, D, Martin, B & Wastney, M (2003) Inulin and calcium metabolism in ovariectomized (OVX) rats Proc Exp Biol Meeting San Diego, CA.Google Scholar