Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T15:51:07.904Z Has data issue: false hasContentIssue false

A Critical Review of PAHs as DIB Carriers - Progress and Open Questions

Published online by Cambridge University Press:  21 February 2014

F. Salama
Affiliation:
NASA Ames Research Center, Space Science & Astrobiology Division, Moffett Field, California 94035, USA email: farid.salama@nasa.gov
P. Ehrenfreund
Affiliation:
Space Policy Institute, George Washington University Washington DC, USA email: pehren@gwu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

PAHs are among the most commonly proposed and popular candidates for DIB carriers. We present a critical assessment of the PAH-DIB model in view of the progress and the advances that have recently been achieved through a series of complementary studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for PAHs (neutrals and ions), space exposure experiments of PAHs, theoretical calculations of PAH spectra and the modeling of diffuse and translucent interstellar clouds. What have we learned from these complementary studies? What are the constraints that can now be derived for the PAHs as DIB carriers? What are the strengths and the weaknesses of the PAH model to account for the DIBs?

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733Google Scholar
Bryson, K. L., Peeters, Z., Salama, F., et al. 2011, Advances in Space Research, 48, 1980CrossRefGoogle Scholar
Crawford, M. K., Tielens, A. G. G. M., & Allamandola, L. J. 1985, ApJ, 293, L45Google Scholar
Ehrenfreund, P., Ruiterkamp, R., Peeters, Z., et al. 2007, Planetary and Space Science, 55, 383CrossRefGoogle Scholar
Flagey, N., Boulanger, F., Verstraete, L., et al. 2006, A&A, 453, 969Google Scholar
Gredel, R., Carpentier, Y., Rouille, G., et al. 2011, A&A, 530, A26Google Scholar
Henning, Th. & Salama, F. 1998, Science, 282, 2204Google Scholar
Léger, A. & d'Hendecourt, L. B. 1985, A&A, 146, 81Google Scholar
Mattila, K., Lemke, D., Haikala, L. K., et al. 1996, A&A 315, L353.Google Scholar
Mattioda, A., Cook, A., Ehrenfreund, P., et al. 2012, Astrobiology, Vol. 12, 841Google Scholar
Onaka, T.et al. 1996, Publ. Astron. Soc. Japan 48, L59.Google Scholar
Puget, J. L. & Léger, A. 1989, ARAA, 27, 161.CrossRefGoogle Scholar
Ruiterkamp, R., Halasinski, T., Salama, F., et al. 2002, A&A 390, 1153Google Scholar
Ruiterkamp, R., Cox, N. L. J., Spaans, M., et al. 2005, A&A 432, 515Google Scholar
Salama, F. 1999, in: d'Hendecourt, L., Joblin, C. and Jones, A. (eds.), Solid Interstellar Matter: The ISO Revolution, (EDP Sciences, Springer-Verlag, Les Ullis), p. 65Google Scholar
Salama, F. 2008, in Organic Matter in Space, Proceedings IAU Symposium No. 251, Kwok, S. & Sandford, S., eds., 357.Google Scholar
Salama, F., Bakes, E. L. O., Allamandola, L. J., & Tielens, A. G. G. M. 1996, ApJ, 458, 621.Google Scholar
Salama, F., Galazutdinov, G. A., Krelowski, J., Allamandola, L. J., & Musaev, F. A. 1999, ApJ, 526, 265CrossRefGoogle Scholar
Salama, F., Galazutdinov, G. A., Krelowski, J., et al. 2011, ApJ, 728, 154Google Scholar
Snow, T. P. & McCall, B. J. 2006, ARA&A, 44, 367Google Scholar
Tielens, A. G. G. M. & Snow, T. P. (eds) 1995, The Diffuse Interstellar Bands, IAU Coll. 137 Kluwer Dordrecht.CrossRefGoogle Scholar
Tielens, A. G. G. M. 2008, ARAA, 46, 289.Google Scholar
van der Zwet, G. P. & Allamandola, L. J. 1985, A&A, 146, 76Google Scholar
Weisman, J. L., Lee, T. J., Salama, F., & Head-Gordon, M. 2003, ApJ, 587, 256CrossRefGoogle Scholar