Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T05:14:39.319Z Has data issue: false hasContentIssue false

Identification of pulsation modes from photometry

Published online by Cambridge University Press:  18 February 2014

Michel Breger*
Affiliation:
Department of Astronomy, University of Texas, Austin, TX 78712, USA email: breger@astro.as.utexas.edu Institut für Astrophysik der Universität Wien, Türkenschanzstr. 17, A–1180, Wien, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The identification of the detected pulsation modes in terms of the spherical harmonic quantum numbers is crucial for asteroseismology. Light curves obtained in different passbands have become an important tool for mode identifications, which rely on wavelength-dependent amplitudes and phase shifts. We demonstrate this for different types of pulsators and review recent successes from earth-based measurements, especially in determining the important l values. The extensive amount of accurate data needed to determine small phase shifts and accurate amplitude ratios suggests multicolor measurements using space satellites. This motivated the multicolor BRITE satellite project, for which the first two satellites have already been launched successfully. We demonstrate the potential from models computed for the BRITE wavelengths. Most of the excellent presently available satellite photometry is not multicolor, although frequencies with amplitudes as small as a few parts-per-million have been detected and confirmed. We briefly discuss mode identifications from frequency patterns, including the use of correlations between phase and amplitude changes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Balona, L. A. 2011, MNRAS, 415, 1691CrossRefGoogle Scholar
Balona, L. A. & Stobie, R. S. 1979, MNRAS, 189, 649Google Scholar
Breger, M., Balona, L., Lenz, P., et al. 2011, MNRAS, 414, 1721Google Scholar
Breger, M., Fossati, L., Balona, L., et al. 2012, ApJ, 759, 62Google Scholar
Breger, M., Lenz, P., & Pamyatnykh, A. A. 2013, ApJ, 773, 56Google Scholar
Chapellier, E., Mathias, P., Weiss, W. W., Le Contel, D., & Debosscher, J. 2012, A&A, 540, A117Google Scholar
Daszyńska-Daszkiewicz, J. & Pamyatnykh, A. A. 2013, in: Suarez, J. C., Garrido, R., Balona, L. A. & Christensen-Dalsgaard, J. (eds.), Stellar Pulsations, Astrophysics and Space Science Proceedings, Vol. 31 (Berlin: Springer), p. 179Google Scholar
Daszyńska-Daszkiewicz, J. & Szewczuk, W. 2011, ApJ, 728, 2011Google Scholar
Daszyńska-Daszkiewicz, J., Dziembowski, W., & Pamyatnykh, A. A. 2003, A&A, 407, 999Google Scholar
Daszyńska-Daszkiewicz, J., Dziembowski, W., & Pamyatnykh, A. A. 2005, A&A, 441, 641Google Scholar
Dziembowski, W. 1977, AcA, 27, 203Google Scholar
Kallinger, T. & Matthews, J. M. 2010, ApJ, 711, L35Google Scholar
Kennelly, E. J., Brown, T. M., Kotak, R., et al. 1998, ApJ, 495, 440CrossRefGoogle Scholar
Lenz, P. & Breger, M. 2005, CoAst, 146, 53Google Scholar
Lenz, P., Daszyńska-Daszkiewicz, J., Pamyatnykh, A. A., & Breger, M. 2008, CoAst, 153, 40Google Scholar
Monnier, J. D., Townsend, R. H. D., Che, X., et al. 2010, ApJ, 725, 1192Google Scholar
Walczak, P., Daszyńska-Daszkiewicz, J., Pamyatnykh, A. A., & Zdravkov, T. 2013, MNRAS, 432, 822Google Scholar
Watson, R. D. 1988, Ap&SS, 140, 255Google Scholar