Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T08:36:48.052Z Has data issue: false hasContentIssue false

Supernovae driven galactic outflows

Published online by Cambridge University Press:  29 January 2014

Biman B. Nath*
Affiliation:
Raman Research Institute, Sadashivanagar, Bangalore 560080, India email: biman@rri.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Outflows from galaxies play a crucial role in the evolution of galaxies and also affect the surrounding medium. The standard scenario of explaining these outflows with the help of supernovae driven wind has recently come under criticism, and other processes such as radiation pressure and cosmic-rays have been invoked. We examine the relative importance of supernovae as the driving mechanism of galactic outflows in light of these competing processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bisnovatyi-Kogan, G. S. & Silich, S. A. 1995, Rev Mod Phys, 67, 661Google Scholar
Chattopadhyay, I., Sharma, M., Nath, B. B., & Ryu, D. 2012, MNRAS, 423, 2153Google Scholar
Chevalier, R. A. & Clegg, A. W. 2009, Nature, 317, 44CrossRefGoogle Scholar
Dekel, A. & Silk, J. 1986, ApJ, 303, 39Google Scholar
Ferrara, A. & Ricotti, M. 2006, MNRAS, 373, 571Google Scholar
Governato, F.et al. 1986, Nature, 463, 203Google Scholar
Heckman, T. M. 2002, in: Mulchaey, L. S. & Stocke, J. (eds.), ASP Conf. Ser. 254, Extragalactic Gas at Low Redshift (San Fransisco, CA: ASP), p. 292Google Scholar
Majumdar, S., Nath, B. B., & Chiba, M. 2001, MNRAS, 324, 537Google Scholar
Marcolini, A., Strickland, D. K., D'Ercole, A., Heckman, T. M., & Hoopes, C. G. 1986, MNRAS, 362, 626CrossRefGoogle Scholar
Martin, C. L. 2005, ApJ, 621, 227Google Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569CrossRefGoogle Scholar
Murray, N., Ménard, B., & Thompson, T. A. 2011, ApJ, 735, 66CrossRefGoogle Scholar
Nath, B. B. & Trentham, N. 1997, MNRAS, 291, 505Google Scholar
Nath, B. B. & Silk, J. 2009, MNRAS, 396, L90CrossRefGoogle Scholar
Oppenheimer, B. D. & Davé, R. 2006, MNRAS, 373, 1265Google Scholar
Roy, A., Nath, B. B., Sharma, P., & Shchekinov, Y. 2013, arxiv:1303.2664Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65CrossRefGoogle Scholar
Sharma, M., Nath, B. B., & Shchekinov, Y. 2011, ApJL, 763, 27Google Scholar
Sharma, M. & Nath, B. B. 2012, ApJ, 750, 55Google Scholar
Sharma, M. & Nath, B. B. 2013, ApJ, 763, 17Google Scholar
Strickland, D. K. & Stevens, I. R. 2000, ApJ, 314, 511Google Scholar
Sturm, E.et al. 2011, ApJL, 733, 16Google Scholar
Tremonti, C. A., Moustakas, J., & Diamnond-Stanic, A. M. 2007, ApJL, 663, 77Google Scholar
Tumlinson, et al. 2011, Science, 334, 948Google Scholar
Uhlig, M., Pfrommer, C., Sharma, M., Nath, B. B., Enßlin, T. A., & Springel, V. 2012, MNRAS, 423, 2374CrossRefGoogle Scholar
Veilleux, S., & Gerald, C., Bland-Hawthorn, J. 2005, ARAA, 43, 769Google Scholar
Wang, B.et al. 1995, ApJ, 444, 590Google Scholar