Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T09:42:59.328Z Has data issue: false hasContentIssue false

Turbophoresis attenuation in a turbulent channel flow with polymer additives

Published online by Cambridge University Press:  12 September 2013

Arash Nowbahar
Affiliation:
Department of Chemical Engineering, The Grove School of Engineering, The City College of New York, CUNY, NY 10031, USA Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
Gaetano Sardina*
Affiliation:
Facoltà di Ingegneria, Architettura e Scienze Motorie, UKE Università Kore di Enna, 94100 Enna, Italy SeRC (Swedish e-Science Research Centre) and Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
Francesco Picano
Affiliation:
SeRC (Swedish e-Science Research Centre) and Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
Luca Brandt
Affiliation:
SeRC (Swedish e-Science Research Centre) and Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: gaetano@mech.kth.se

Abstract

Turbophoresis occurs in wall-bounded turbulent flows where it induces a preferential accumulation of inertial particles towards the wall and is related to the spatial gradients of the turbulent velocity fluctuations. In this work, we address the effects of drag-reducing polymer additives on turbophoresis in a channel flow. The analysis is based on data from a direct numerical simulation of the turbulent flow of a viscoelastic fluid modelled with the FENE-P closure and laden with particles of different inertia. We show that polymer additives decrease the particle preferential wall accumulation and demonstrate with an analytical model that the turbophoretic drift is reduced because the wall-normal variation of the wall-normal fluid velocity fluctuations decreases. As this is a typical feature of drag reduction in turbulent flows, an attenuation of turbophoresis and a corresponding increase in the particle streamwise flux are expected to be observed in all of these flows, e.g. fibre or bubble suspensions and magnetohydrodynamics.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 84502.CrossRefGoogle ScholarPubMed
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.2.0.CO;2>CrossRefGoogle Scholar
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007 Simson: a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics.Google Scholar
Chhabra, RP, Uhlherr, PHT & Boger, DV 1980 The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. J. Non-Newtonian Fluid Mech. 6 (3), 187199.CrossRefGoogle Scholar
De Angelis, E., Casciola, C. M., L’vov, V. S. & Piva, R. 2003 Drag reduction by polymers in turbulent channel flows: energy redistribution between invariant empirical modes. Phys. Rev. E 67 (5 Pt 2) 056312.CrossRefGoogle ScholarPubMed
De Angelis, E., Casciola, C. M. & Piva, R. 2002 DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids 31 (4), 495507.CrossRefGoogle Scholar
De Lillo, F., Boffetta, G. & Musacchio, S. 2012 Control of particle clustering in turbulence by polymer additives. Phys. Rev. E 85 (3) 036308.CrossRefGoogle ScholarPubMed
Grindle, T. J., Burcham, F. W. & Hugh, L. 2003 Engine damage to a NASA DC-8-72 airplane from a high-altitude encounter with a diffuse volcanic ash cloud. NASA Technical Memorandum TM-2003-212030.Google Scholar
Lee, P. F. W. & Duffy, G. G. 1976 Relationships between velocity profiles and drag reduction in turbulent fibre suspension flow. AIChE J. 22 (4), 750753.CrossRefGoogle Scholar
Liu, B. Y. H. & Agarwal, J. K. 1974 Experimental observation of aerosol deposition in turbulent flow. J. Aerosol. Sc. 5 (2), 145155.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883.CrossRefGoogle Scholar
Picano, F., Battista, F., Troiani, G. & Casciola, C. M. 2011 Dynamics of PIV seeding particles in turbulent premixed flames. Exp. Fluids 50 (1), 7588.CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093305.CrossRefGoogle Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.CrossRefGoogle Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428 (1), 149169.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012a Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699 (1), 5078.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C. M., Brandt, L. & Henningson, D. S. 2012b Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706 (1), 584596.CrossRefGoogle Scholar
Sellin, R. H. J., Hoyt, J. W. & Scrivener, O. 1982 The effect of drag-reducing additives on fluid flows and their industrial applications part 1: basic aspects. J. Hydraul. Res. 20 (1), 2968.CrossRefGoogle Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.CrossRefGoogle Scholar
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9 (3), 743755.CrossRefGoogle Scholar
Tsinober, A. 1990 MHD flow drag reduction. Viscous drag reduction in boundary layers 123, 327349.Google Scholar
Urban, Dieter & Takamura, Koichi 2002 Polymer Dispersions and their Industrial Applications. Wiley-VCH.CrossRefGoogle Scholar
Van Den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94 (4), 44501.CrossRefGoogle ScholarPubMed
Vance, M. W., Squires, K. D. & Simonin, O. 2006 Properties of the particle velocity field in gas–solid turbulent channel flow. Phys. Fluids 18, 063302.CrossRefGoogle Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.CrossRefGoogle Scholar
Visconti, I. C., Langella, A. & Durante, M. 2001 The wear behaviour of composite materials with epoxy matrix filled with hard powder. Appl. Compos. Mater. 8 (3), 179189.CrossRefGoogle Scholar
Vogler, T. J., Alexander, C. S., Wise, J. L. & Montgomery, S. T. 2010 Dynamic behaviour of tungsten carbide and alumina filled epoxy composites. J. Appl. Phys. 107 (4), 043520.CrossRefGoogle Scholar
Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentrations distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wu, Z. & Young, J. B. 2012 The deposition of small particles from a turbulent air flow in a curved duct. Intl J. Multiphase Flow 44, 3447.CrossRefGoogle Scholar
Xi, L. & Graham, M. D. 2010 Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104 (21), 218301.CrossRefGoogle ScholarPubMed
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340 (1), 129159.CrossRefGoogle Scholar
Zaichik, L. I. 1999 A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11, 1521.CrossRefGoogle Scholar