Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T04:42:36.480Z Has data issue: false hasContentIssue false

Supermassive black holes: Coevolution (or not) of black holes and host galaxies

Published online by Cambridge University Press:  17 July 2013

John Kormendy*
Affiliation:
Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA; Max-Planck-Institut für Extraterrestrische Physik, Garching bei München, Germany; Universitäts-Sternwarte, Ludwig-Maximilians-Universität, München, Germany; email: kormendy@astro.as.utexas.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its ‘proof of concept’ phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M and bulge luminosity, with the ‘missing light’ that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade.

New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105—106M live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH–host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies get accreted. Finally, the highest-mass galaxies inherit coevolution effects from smaller galaxies; the tightness of their BH correlations is caused mainly by averaging during dissipationless major mergers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Baes, M., Buyle, P., Hau, G. K. T., & Dejonghe, H. 2003, MNRAS, 341, L44CrossRefGoogle Scholar
Barth, A. J., Ho, L. C., Rutledge, R. E., & Sargent, W. L. W. 2004, ApJ, 607, 90Google Scholar
Barth, A. J., Sarzi, M., Rix, H.-W., et al. 2001, ApJ, 555, 685CrossRefGoogle Scholar
Bender, R., Surma, P., Döbereiner, S., Möllenhoff, C., & Madejsky, R. 1989, A&A, 217, 35Google Scholar
Burkert, A. & Tremaine, S. 2010, ApJ, 720, 516Google Scholar
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Bacon, R., et al. 2007, MNRAS, 379, 418Google Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 416, 1680CrossRefGoogle Scholar
Cattaneo, A., Dekel, A., Devriendt, J., Guiderdoni, B., & Blaizot, J. 2006, MNRAS, 370, 1651CrossRefGoogle Scholar
Cattaneo, A., Dekel, A., Faber, S. M., & Guiderdoni, B. 2008, MNRAS, 389, 567CrossRefGoogle Scholar
Cattaneo, A., Faber, S. M., Binney, J., et al. 2009, Nature, 460, 213Google Scholar
Corbelli, E. 2003, MNRAS, 342, 199Google Scholar
Côté, P., Ferrarese, L., Jordán, A., et al. 2007, ApJ, 671, 1456Google Scholar
Cox, T. J., Jonsson, P., Primack, J. R., & Somerville, R. S. 2006, MNRAS, 373, 1013CrossRefGoogle Scholar
Cretton, N. & van den Bosch, F. C. 1999, ApJ, 514, 704CrossRefGoogle Scholar
Davies, R. L., Efstathiou, G., Fall, S. M., Illingworth, G., & Schechter, P. L. 1983, ApJ, 266, 41CrossRefGoogle Scholar
Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2Google Scholar
Dong, X.-B., Ho, L. C., Yuan, W., et al. 2012, ApJ, 755, 167Google Scholar
Dressler, A. 1989, in IAU Symposium 134, Active Galactic Nuclei, ed. Osterbrock, D. E. & Miller, J. S. (Dordrecht: Kluwer), p. 217Google Scholar
Ebisuzaki, T., Makino, J., & Okamura, S. K. 1991, Nature, 354, 212CrossRefGoogle Scholar
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2007, MNRAS, 379, 401Google Scholar
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2011, MNRAS, 414, 888CrossRefGoogle Scholar
Erwin, P., Vega Beltrán, J. C., Graham, A. W., & Beckman, J. E. 2003, ApJ, 597, 929CrossRefGoogle Scholar
Faber, S. M. & Jackson, R. E. 1976, ApJ, 204, 668CrossRefGoogle Scholar
Faber, S. M., Tremaine, S., Ajhar, E. A., et al. 1997, AJ, 114, 1771CrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 455CrossRefGoogle Scholar
Fabian, A. C. 2013, in IAU Symposium 290, Feeding Compact Objects: Accretion on All Scales, ed. Belloni, T.et al. (Cambridge: Cambridge Univ. Press), p. 3Google Scholar
Ferrarese, L. 2002, ApJ, 578, 90CrossRefGoogle Scholar
Ferrarese, L. & Ford, H. 2005, Space Sci. Revs, 116, 523CrossRefGoogle Scholar
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Filippenko, A. V. & Ho, L. C. 2003, ApJ, 588, L13Google Scholar
Filippenko, A. V., Ho, L. C., & Sargent, W. L. W. 1993, ApJ, 410, L75CrossRefGoogle Scholar
Freeman, K. C. 1970, ApJ, 160, 811CrossRefGoogle Scholar
Gaskell, C. M. 2010, in The First Stars and Galaxies: Challenges for the Next Decade, ed. Whalen, D. J., Bromm, V., & Yoshida, N. (Melville: AIP), p. 261Google Scholar
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13Google Scholar
Gebhardt, K., Adams, J., Richstone, D., et al. 2011, ApJ, 729, 119CrossRefGoogle Scholar
Gebhardt, K., Lauer, T. R., Kormendy, J., et al. 2001, AJ, 122, 2469CrossRefGoogle Scholar
Gebhardt, K., Richstone, D., Tremaine, S., et al. 2003, ApJ, 583, 92CrossRefGoogle Scholar
Gebhardt, K. & Thomas, J. 2009, ApJ, 700, 1690CrossRefGoogle Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121Google Scholar
Greene, J. E. & Ho, L. C. 2004, ApJ, 610, 722Google Scholar
Greene, J. E. & Ho, L. C. 2007a, ApJ, 667, 131; Erratum 2009, ApJ, 704, 1743CrossRefGoogle Scholar
Greene, J. E. & Ho, L. C. 2007b, ApJ, 670, 92Google Scholar
Greene, J. E., Ho, L. C., & Barth, A. J. 2008, ApJ, 688, 159Google Scholar
Greene, J. E., Peng, C. Y., Kim, M., et al. 2010, ApJ, 721, 26CrossRefGoogle Scholar
Gültekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, ApJ, 698, 198Google Scholar
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L89Google Scholar
Harris, G. L. H. & Harris, W. E. 2011, MNRAS, 410, 2347CrossRefGoogle Scholar
Hilz, M., Naab, T., Ostriker, J. P. 2012, MNRAS, 429, 2924Google Scholar
Hirschmann, M., Khochfar, S., Burkert, A., et al. 2010, MNRAS, 407, 1016CrossRefGoogle Scholar
Ho, L. C. 1999, in Observational Evidence for Black Holes in the Universe, ed. Chakrabarti, S. K. (Dordrecht: Kluwer), p. 157Google Scholar
Ho, L. C. 2008, ARAA, 46, 475Google Scholar
Hopkins, P. F., Bundy, K., Hernquist, L., Wuyts, S., & Cox, T. J. 2010, MNRAS, 401, 1099CrossRefGoogle Scholar
Hopkins, P. F., Cox, T. J., Dutta, S. N., et al. 2009, ApJS, 181, 135CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., Dutta, S. N., & Rothberg, B. 2008, ApJ, 679, 156Google Scholar
Hu, J. 2008, MNRAS, 386, 2242Google Scholar
Jahnke, K. & Macciò, A. V. 2011, ApJ, 734, 92CrossRefGoogle Scholar
Jiang, Y.-F., Greene, J. E., & Ho, L. C. 2011, ApJ, 737, L45CrossRefGoogle Scholar
Kormendy, J. 1977, ApJ, 218, 333CrossRefGoogle Scholar
Kormendy, J. 1993, in The Nearest Active Galaxies, ed. Beckman, J., Colina, L. & Netzer, H. (Madrid: Consejo Superior de Investigaciones Científicas), p. 197Google Scholar
Kormendy, J. 1999, in Galaxy Dynamics: A Rutgers Symposium, ed. Merritt, D., Sellwood, J. A. & Valluri, M. (San Francisco: ASP), p. 124Google Scholar
Kormendy, J. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. Ho, L. C. (Cambridge: Cambridge Univ. Press), p. 1Google Scholar
Kormendy, J. 2013, in XXIII Canary Islands Winter School of Astrophysics, Secular Evolution of Galaxies, ed. Falcón-Barroso, J. & Knapen, J. H. (Cambridge: Cambridge Univ. Press), p. 1Google Scholar
Kormendy, J. & Bender, R. 2009, ApJ, 691, L142CrossRefGoogle Scholar
Kormendy, J. & Bender, R. 2011, Nature, 469, 377Google Scholar
Kormendy, J. & Bender, R. 2012, ApJS, 198, 2Google Scholar
Kormendy, J. & Bender, R. 2013, ApJ, 769, L5Google Scholar
Kormendy, J., Bender, R., & Cornell, M. E. 2011, Nature, 469, 374Google Scholar
Kormendy, J., Bender, R., Magorrian, J., et al. 1997, ApJ, 482, L139Google Scholar
Kormendy, J., Drory, N., Bender, R., & Cornell, M. E. 2010, ApJ, 723, 54CrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS 182 216 (KFCB)CrossRefGoogle Scholar
Kormendy, J. & Gebhardt, K. 2001, in 20th Texas Symposium on Relativistic Astrophysics, ed. Wheeler, J. C. & Martel, H. (Melville, NY: AIP), p. 363Google Scholar
Kormendy, J. & Ho, L. C. 2013, ARAA, in pressGoogle Scholar
Kormendy, J., & Kennicutt, R. C. 2004, ARAA, 42, 603CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581CrossRefGoogle Scholar
Lake, G. & Dressler, A. 1986, ApJ, 310, 605CrossRefGoogle Scholar
Lauer, T. R., Faber, S. M., Richstone, D., et al. 2007, ApJ, 662, 808CrossRefGoogle Scholar
Macchetto, F., Marconi, A., Axon, D. J., et al. 1997, ApJ, 489, 579Google Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Marconi, A. & Hunt, L. K. 2003, ApJ, 589, L21Google Scholar
McConnell, N. J., Ma, C.-P., Gebhardt, K., et al. 2011, Nature, 480, 215CrossRefGoogle Scholar
McConnell, N. J., Ma, C.-P., Murphy, J. D., et al. 2012, ApJ, 756, 179Google Scholar
McLure, R. J. & Dunlop, J. S. 2002, MNRAS, 331, 795Google Scholar
Merritt, D. & Ferrarese, L. 2001, MNRAS, 320, L30Google Scholar
Mihos, J. C. & Hernquist, L. 1994, ApJ, 437, L47CrossRefGoogle Scholar
Milosavljević, M. & Merritt, D. 2001, ApJ, 563, 34Google Scholar
Milosavljević, M., Merritt, D., Rest, A., & van den Bosch, F. C. 2002, MNRAS, 331, L51Google Scholar
Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995, Nature, 373, 127CrossRefGoogle Scholar
Naab, T. 2013, in IAU Symposium 295, The Intriguing Life of Massive Galaxies, ed. Thomas, D., Pasquali, A., & Ferreras, I. (Cambridge: Cambridge University Press), arXiv:1211.6892Google Scholar
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJ, 699, L178Google Scholar
Newman, S. F., Genzel, R., Förster-Schreiber, N. M., et al. 2012, ApJ, 761, 43CrossRefGoogle Scholar
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, ApJ, 725, 2312Google Scholar
Ostriker, J. P. & Ciotti, L. 2005, Phil. Trans. R. Soc. London, 363, A667Google Scholar
Pellegrini, S. 1999, A&A, 351, 487Google Scholar
Pellegrini, S. 2005, MNRAS, 364, 169CrossRefGoogle Scholar
Peng, C. 2007, ApJ, 671, 1098Google Scholar
Peterson, B. M., Bentz, M. C., Desroches, L.-B., et al. 2005, ApJ, 632, 799Google Scholar
Pizzella, A., Corsini, E. M., Dalla Bontà, E., et al. 2005, ApJ, 631, 785Google Scholar
Rees, M. J. 1984, ARAA, 22, 471Google Scholar
Reines, A. E., Sivakoff, G. R., Johnson, K. E., & Brogan, C. L. 2011, Nature, 470, 66Google Scholar
Renzini, A. 1999, in The Formation of Galactic Bulges, ed. Carollo, C. M., Ferguson, H. C. & Wyse, R. F. G. (Cambridge: Cambridge University Press), p. 9Google Scholar
Richstone, D., Ajhar, E. A., Bender, R., et al. 1998, Nature, 395, A14Google Scholar
Rothberg, B. & Joseph, R. D. 2004, AJ, 128, 2098CrossRefGoogle Scholar
Rusli, S., Thomas, J., Saglia, R. P., et al. 2013, arXiv:1306.1124Google Scholar
Schulze, A. & Gebhardt, K. 2011, ApJ, 729, 21Google Scholar
Sérsic, J. L. 1968, Atlas de Galaxias Australes (Córdoba: Obs. Astronómico, Univ. de Córdoba)Google Scholar
Shen, J. & Gebhardt, K. 2010, ApJ, 711, 484Google Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Springel, V. & Hernquist, L. 2005, ApJ, 622, L9Google Scholar
Swaters, R. A., Sancisi, R., van Albada, T. S., & van der Hulst, J. M. 2009, A&A, 493, 871Google Scholar
Thornton, C. E., Barth, A. J., Ho, L. C., & Rutledge, R. E., Greene, J. E. 2008, ApJ, 686, 892CrossRefGoogle Scholar
Tonry, J. L. 1981, ApJ, 251, L1Google Scholar
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740Google Scholar
van Albada, T. S. & Sancisi, R. 1986, Phil. Trans. R. Soc. London, 320, A447Google Scholar
van den Bosch, R. C. E. & de Zeeuw, P. T. 2010, MNRAS, 401, 1770Google Scholar
van Dokkum, P. G., Whitaker, K. E., Brammer, G., et al. 2010, ApJ, 709, 1018CrossRefGoogle Scholar
Walsh, J. L., Barth, A. J., & Sarzi, M. 2010, ApJ, 721, 762Google Scholar
Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, AJ, 692, 187Google Scholar
Xiao, T., Barth, A. J., Greene, J. E, et al. 2011, ApJ, 739, 28Google Scholar