Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T10:30:21.168Z Has data issue: false hasContentIssue false

Solar-like differential rotation and equatorward migration in a convective dynamo with a coronal envelope

Published online by Cambridge University Press:  18 July 2013

J. Warnecke
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
P. J. Käpylä
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Physics, PO BOX 64, FI-00014Helsinki University, Finland
M. J. Mantere
Affiliation:
Department of Physics, PO BOX 64, FI-00014Helsinki University, Finland Department of Information and Computer Science, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
A. Brandenburg
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of convective turbulent dynamo simulations including a coronal layer in a spherical wedge. We find an equatorward migration of the radial and azimuthal fields similar to the behavior of sunspots during the solar cycle. The migration of the field coexist with a spoke-like differential rotation and anti-solar (clockwise) meridional circulation. Even though the migration extends over the whole convection zone, the mechanism causing this is not yet fully understood.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424 CrossRefGoogle Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S. & Toomre, J. 2011, ApJ, 731, 69 Google Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073 Google Scholar
Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508 CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJL, 715, L133 Google Scholar
Gilman, P. A. 1983, ApJS, 53, 243 Google Scholar
Käpylä, P. J., Korpi, M. J., & Tuominen, I. 2006, AN, 327, 884 Google Scholar
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2010, AN, 331, 73 Google Scholar
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P. 2011, A&A, 531, A162 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2011, Astron. Nachr., 332, 883 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012, ApJL, 755, L22 CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., & Brandenburg, A. 2013, ApJ submitted, arXiv:1301.2595Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 1999, A&A, 344, 911 Google Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2012, Solar Phys., 276, 3 CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618 Google Scholar
Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D. 2009, ApJ, 697, 923 Google Scholar
Warnecke, J., & Brandenburg, A. 2010, A&A, 523, A19 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534 A11 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2012a JSWSC, 2, A11 Google Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012b Solar Phys., 280, 299 CrossRefGoogle Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2013, ApJ submitted, arXiv:1301.2248Google Scholar