Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T14:25:49.625Z Has data issue: false hasContentIssue false

The effects of physics and chemical-abundance uncertainties on the properties of lower-mass stars that are used as standard candles

Published online by Cambridge University Press:  26 February 2013

Don A. VandenBerg*
Affiliation:
Department of Physics & Astronomy, University of Victoria, P. O. Box 3055, Victoria, B.C. V8W 3P6, Canada email: vandenbe@uvic.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distances to old stellar populations have traditionally been derived from three standard candles: the luminosity of the red-giant-branch tip, the absolute magnitudes of RR Lyrae stars, and the colour–magnitude-diagram loci of nearby subdwarfs. The distance-modulus uncertainties that are associated with these methods are still at the level of ±0.10–0.15 mag. Current stellar models are able to satisfy these age-independent constraints to well within their error bars, which are mainly owing to the uncertainties in the distances of the calibrating objects and, directly or indirectly, to chemical-abundance uncertainties. The impact of varying the physics and the assumed abundances in stellar models on the aforementioned standard candles is discussed, as is the use of the giant-branch bump luminosity to constrain the distance scale.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alongi, M., Bertelli, G., Bressan, A., & Chiosi, C. 1991, A&A, 244, 95Google Scholar
Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nucl. Phys. A, 656, 3Google Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187Google Scholar
Bellazzini, M., Ferraro, F. R., Sollima, A., Pancino, E., & Origlia, L. 2004, A&A, 424, 199Google Scholar
Böhm-Vitense, E. 1958, Z. Astrophys., 46, 108Google Scholar
Brogaard, K., VandenBerg, D. A., Bruntt, H., et al. 2012, A&A, 543, A106Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., D'Orazi, V., & Lucatello, S. 2009, A&A, 508, 695Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Recio-Blanco, A., Lucatello, S., D'Orazi, V., & Cassisi, S. 2010, A&A, 516, 55.Google Scholar
Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., & Asplund, M. 2010, A&A, 512, 54Google Scholar
Cassisi, S., Potekhin, A., Pietrinferni, A., Catelan, M., & Salaris, M. 2007, ApJ, 661, 1094Google Scholar
Clementini, G., Gratton, R. G., Bragaglia, A., Carretta, E., Di Fabrizio, L., & Maio, M. 2003, AJ, 125, 1309Google Scholar
Da Costa, G. S. & Armandroff, T. E. 1990, AJ, 100, 162Google Scholar
Di Cecco, A., Bono, G., Stetson, P. B., et al. 2010, ApJ, 712, 527Google Scholar
Fahlman, G. G., Richer, H. B., & VandenBerg, D. A. 1985, ApJS, 58, 225Google Scholar
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585Google Scholar
Fernley, J., Barnes, T. G., Skillen, I., et al. 1998, A&A, 330, 515Google Scholar
Formicola, A., Imbriani, G., Costantini, H., et al. 2004, Phys. Lett. B, 591, 61Google Scholar
Fusi Pecci, F., Ferraro, F. R., Crocker, D. A., Rood, R. T., & Buonanno, R. 1990, A&A, 238, 95Google Scholar
Itoh, N., Uchida, S., Sakamoto, Y., Kohyama, Y., & Nozawa, S. 2008, ApJ, 677, 495CrossRefGoogle Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18Google Scholar
Marta, M., Formicola, A., Gyürky, Gy., et al. 2008, Phys. Rev. C, 78, 022802CrossRefGoogle Scholar
Nordlander, T., Korn, A. J., Richard, O., & Lind, K. 2012, ApJ, 753, 48Google Scholar
Pietrinferni, A., Cassisi, S., & Salaris, M. 2010, A&A, 522, A76Google Scholar
Potekhin, A. Y. 1999, A&A, 351, 787Google Scholar
Ramírez, I., Meléndez, J., & Chanamé, J. 2012, ApJ, 757, 164Google Scholar
Richer, J., Michaud, G., & Turcotte, S. 2000, ApJ, 529, 338Google Scholar
Sandage, A. 1993, AJ, 196, 719Google Scholar
Trampedach, R. & Stein, R. F. 2011, ApJ, 731, 78Google Scholar
VandenBerg, D. A. & Bell, R. A. 2001, New Astron. Rev., 45, 577Google Scholar
VandenBerg, D. A., Bergbusch, P. A., Dotter, A., Ferguson, J. W., Michaud, G., Richer, J., & Proffitt, C. R. 2012, ApJ, 755, 15 (VBD12)Google Scholar
VandenBerg, D. A., Casagrande, L., & Stetson, P. B. 2010, AJ, 140, 1020Google Scholar
VandenBerg, D. A., Edvardsson, B., Eriksson, K., & Gustafsson, B. 2008, ApJ, 675, 746CrossRefGoogle Scholar
van Leeuwen, F. 2007, A&A, 474, 653Google Scholar