Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:18:57.318Z Has data issue: false hasContentIssue false

Late-time evolution of ultracompact X-ray binaries

Published online by Cambridge University Press:  21 February 2013

L. M. van Haaften*
Affiliation:
Department of Astrophysics/ IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
G. Nelemans
Affiliation:
Department of Astrophysics/ IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands Institute for Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
R. Voss
Affiliation:
Department of Astrophysics/ IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultracompact X-ray binaries (UCXBs) have orbital periods shorter than about 80 minutes and typically consist of a neutron star that accretes hydrogen-poor matter from a white dwarf companion. Angular momentum loss via gravitational wave radiation drives mass transfer via Roche-lobe overflow. The late-time evolution of UCXBs is poorly understood – all 13 known systems are relatively young and it is not clear why. One question is whether old UCXBs actually still exist, or have they become disrupted at some point? Alternatively they may be simply too faint to see. To investigate this, we apply the theories of dynamical instability, the magnetic propeller effect, and evaporation of the donor, to the UCXB evolution. We find that both the propeller effect and evaporation are promising explanations for the absence of observed long-period UCXBs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bailes, M., Bates, S. D., Bhalerao, V., et al. 2011, Science, 33, 1717Google Scholar
Davidson, K. & Ostriker, J. P. 1973, ApJ, 179, 585Google Scholar
Deloye, C. J. & Bildsten, L. 2003, ApJ, 598, 1217Google Scholar
Kataoka, J., Yatsu, Y., Kawai, N., et al. 2012, ApJ, 757, 176Google Scholar
Nelemans, G., Yungelson, L. R., van der Sluys, M. V., & Tout, C. A. 2010, MNRAS, 401, 1347Google Scholar
Pletsch, H. J., Guillemot, L., Fehrmann, H., et al. 2012, Science, doi:10.1126/science.1229054Google Scholar
Priedhorsky, W. C. & Verbunt, F. 1988, ApJ, 333, 895CrossRefGoogle Scholar
Romani, R. W. 2012, ApJ, 754, L25Google Scholar
Romani, R. W., Filippenko, A. V., Silverman, J. M., et al. 2012, ArXiv e-prints, 1210.6884v1Google Scholar
Ruderman, M., Shaham, J., & Tavani, M. 1989, ApJ, 336, 507Google Scholar
Savonije, G. J., de Kool, M., & van den Heuvel, E. P. J. 1986, A&A, 155, 51Google Scholar
van Haaften, L. M., Nelemans, G., Voss, R., & Jonker, P. G. 2012a, A&A, 541, A22Google Scholar
van Haaften, L. M., Nelemans, G., Voss, R., et al. 2012b, A&A, 537, A104Google Scholar
van Haaften, L. M., Voss, R., & Nelemans, G. 2012c, A&A, 543, A121Google Scholar
Yungelson, L. R., Lasota, J.-P., Nelemans, G., et al. 2006, A&A, 454, 559Google Scholar