Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T08:08:04.971Z Has data issue: false hasContentIssue false

X-ray variability of 104 active galactic nuclei

Published online by Cambridge University Press:  21 February 2013

O. González-Martín
Affiliation:
Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea, s/n, E-38205 La Laguna, Spain Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38205 La Laguna, Spain Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, s/n 18008 Granada, Spain
S. Vaughan
Affiliation:
Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK email: omairagm@iac.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) active galactic nuclei (AGN) using 209 XMM-Newton/pn observations, including several AGN classes. These PSDs span ≃ 3 decades in temporal frequencies, ranging from minutes to days. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. A fraction of 72% show significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of α = 2.01±0.01. In 15 sources we found that the bending power law model was preferred with a mean slope of α = 3.08±0.04 and a mean bend frequency of 〈νb〉 ≃ 2 × 10−4 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The ‘fundamental plane’ relating variability timescale, black hole mass, and luminosity is demonstrated using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Barret, D. & Vaughan, S., 2012 ApJ, in press (arXiv:1112.0535)Google Scholar
Cui, W., Zhang, S. N., Focke, W., & Swank, J. H. 1997, ApJ, 484, 383Google Scholar
Gierliński, M., Middleton, M., Ward, M., & Done, C. 2008, Nature, 455, 369CrossRefGoogle Scholar
Markowitz, A., et al. 2003, ApJ, 593, 96Google Scholar
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P., & Fender, R. P. 2006, Nature, 444, 730Google Scholar
Middleton, M., Done, C., Ward, M., Gierliński, M., & Schurch, N. 2009, MNRAS, 394, 250Google Scholar
Priestley, M. B. 1981, Spectral Analysis and Time Series, Academic Press, London.Google Scholar
Remillard, R. A. & McClintock, J. E. 2006, ARAA, 44, 49CrossRefGoogle Scholar
Uttley, P., McHardy, I. M., & Papadakis, I. E. 2002, MNRAS, 332, 231Google Scholar
Vaughan, S., Edelson, R., Warwick, R. S., & Uttley, P. 2003A, MNRAS, 345, 1271CrossRefGoogle Scholar
Vaughan, S. & Uttley, P., 2005, MNRAS, 362, 235CrossRefGoogle Scholar
Vaughan, S. 2010, MNRAS, 402, 307Google Scholar
Vaughan, S., Uttley, P., Pounds, et al. 2011, MNRAS, 413, 2489Google Scholar
Véron-Cetty, M.-P. & Véron, P. 2010, A&A, 518, A10Google Scholar