Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T20:14:05.330Z Has data issue: false hasContentIssue false

Precision CMB Measurements from Long Duration Stratospheric Balloons: Towards B-modes and Inflation

Published online by Cambridge University Press:  30 January 2013

William C. Jones*
Affiliation:
Princeton University, Department of Physics, 323 Jadwin Hall, Washington Road, Princeton, NJ 08544, USA email: wcjones@princeton.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of the Cosmic Microwave Background (CMB) have played a leading role in establishing an understanding of the structure and evolution of the Universe on the largest scales. This achievement has been enabled by a series of extremely successful experiments, coupled with the simplicity of the relationship between the cosmological theory and data. Antarctic experiments, including both balloon-borne telescopes and instruments at the South Pole, have played a key role in realizing the scientific potential of the CMB, from the characterization of the temperature anisotropies to the detection and study of the polarized component. Current and planned Antarctic long duration balloon experiments will extend this heritage of discovery to test theories of cosmic genesis through sensitive polarized surveys of the millimeter-wavelength sky. In this paper we will review the pivotal role that Antarctic balloon borne experiments have played in transforming our understanding of the Universe, and describe the scientific goals and technical approach of current and future missions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aubin, F., et al. 2010, in SPIE Conference Series, 7741, 77411TGoogle Scholar
Battistelli, E. S., et al. 2012, MNRAS 423, 1293Google Scholar
Bonetti, J., et al. 2012, J. Low Temp. Phys. 167, 146Google Scholar
Brevik, J. A., et al. 2010, in SPIE Conference Series, 7741, 77411HGoogle Scholar
Burton, M., et al. 1994, PASA, 11, 127Google Scholar
Caderni, N., Fabbri, R., Melchiorri, B., Melchiorri, F., & Natale, V. 1978, Phys. Rev. D 17, 1908CrossRefGoogle Scholar
Challinor, A. D. 2012, these proceedingsGoogle Scholar
Gregory, D. D. & Stepp, W. E.. 2004, Advances in Space Research 33, 1608Google Scholar
Gregory, D. D.. 2006, Advances in Space Research 37, 2021CrossRefGoogle Scholar
de Bernardis, P., et al. 2000, Nature, 404, 955CrossRefGoogle Scholar
Fraisse, A. A., et al. 2011, ArXiv 1106.3087Google Scholar
George, E. M., et al. 2012, ArXiv 1210.4971Google Scholar
Halverson, N. 2012, these proceedingsGoogle Scholar
Hanany, S., et al. 2000, ApJ 545, L5Google Scholar
Hubmayr, J., et al. 2012, J. Low Temp. Phys. 167, 904Google Scholar
Jones, W. C., Bhatia, R., Bock, J. J., & Lange, A. E. 2003, in SPIE Conference Series 4855, ed. Phillips, T. G. & Zmuidzinas, J., 227Google Scholar
Jones, W. C., et al. 2006a, ApJ 647, 823Google Scholar
Jones, W. C., et al. 2006b, New Ast. Rev. 50, 945CrossRefGoogle Scholar
Jones, W. C., et al. 2007, A&A 470, 771Google Scholar
Kamionkowski, M. 1999, Nuc. Phys. B Proceedings Supplements 70, 529Google Scholar
Kamionkowski, M. & Kosowsky, A. 1999, Ann. Rev. Nuclear and Particle Science 49, 77Google Scholar
Komatsu, E., et al. 2011, ApJS, 192, 18Google Scholar
Kosowsky, A. 1999, New Ast. Rev. 43, 157CrossRefGoogle Scholar
Kovac, J. M., et al. 2002, Nature 420, 772CrossRefGoogle Scholar
Kuo, C. L., et al. 2006, Nuclear Instruments and Methods in Physics Research A 559, 608CrossRefGoogle Scholar
Lange, A., et al. 1995, Space Sci. Rev. 74, 145Google Scholar
Lange, A. E. 2002, in Proc. Far-IR, Sub-mm & mm Detector Technology Workshop, ed. Wolf, J., Farhoomand, J., & McCreight, C. R., NASA/CP-211408Google Scholar
Lange, A. E., Bock, J. J., & Zmuidzinas, J. 1999, in NASA Space Astrophysics Detector DevelopmentGoogle Scholar
Lange, A. E., et al. 1996, in ESA Special Publication 388, Submillimetre and Far-Infrared Space Instrumentation, ed. Rolfe, E. J. & Pilbratt, G., 105Google Scholar
Lange, A. E., et al. 2001, Phys. Rev. D 63, 042001Google Scholar
Larson, D., et al. 2011, ApJS 192, 16Google Scholar
Leitch, E. M., et al. 2002, Nature 420, 763CrossRefGoogle Scholar
MacTavish, C. J., et al. 2006, ApJ 647, 799Google Scholar
McMahon, J., et al. 2012, J. Low Temp. Phys. 167, 879Google Scholar
Montroy, T. E., et al. 2006, ApJ 647, 813Google Scholar
Netterfield, C. B., Jarosik, N., Page, L., Wilkinson, D., & Wollack, E. 1995, ApJ 445, L69Google Scholar
Netterfield, C. B., et al. 2002, ApJ 571, 604Google Scholar
Piacentini, F., et al. 2006, ApJ 647, 833Google Scholar
Rees, M. J. 1968, ApJ, 153, L1Google Scholar
Reichborn-Kjennerud, B., et al. 2010, in SPIE Conference Series 7741, 77411CGoogle Scholar
Ruhl, J. E., et al. 2003, ApJ, 599, 786Google Scholar
Samtleben, D., Staggs, S., & Winstein, B. 2007, Ann. Rev. Nuclear and Particle Science 57, 245Google Scholar
Scott, D. 1999, ArXiv astro-ph/9911325Google Scholar
Smoot, G. F., et al. 1992, ApJ, 396, L1Google Scholar
Storey, J. W. V., Ashley, M. C. B., Burton, M. G., & Phillips, M. A. 1998, in SPIE Conference Series 3354, ed. Fowler, A. M., 1158Google Scholar
Takahashi, Y. D., et al. 2010, ApJ 711, 1141Google Scholar
Torbet, E., et al. 1999, ApJ 521, L79Google Scholar
Westbrook, B., et al. 2012, J. Low Temp. Phys. 167, 885Google Scholar
Wright, E. L., et al. 1992, ApJ, 396, L13Google Scholar