Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T09:09:20.892Z Has data issue: false hasContentIssue false

Population Synthesis of Type Ia SNe: Constraining Free Parameters from Observations

Published online by Cambridge University Press:  17 January 2013

Maxwell Moe
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, 02138, USA email: mmoe@cfa.harvard.edu
Rosanne Di Stefano
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA, 02138, USA email: mmoe@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Computing the rate of Type Ia supernovae (SNe Ia) from first principles is difficult because there are large uncertainties regarding several key binary processes such as common envelope evolution, tidal interactions, and the efficiency of mass transfer. Fortunately, a range of observational parameters of binaries in intermediate stages of evolution can help us model these processes in a way that is likely to mirror the true binary evolution. We discuss how this observationally-motivated approach may have the effect of increasing the predicted rate of single degenerate progenitors of SNe Ia, while simultaneously decreasing the number of double degenerate progenitors.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Chen, X., Han, Z., & Tout, C. A., 2011, ApJ, 735, 31CrossRefGoogle Scholar
De Marco, O., Passy, J.-C., Moe, M., Herwig, F.et al., 2011, MNRAS, 411, 2277Google Scholar
Dorfi, E. A. & Hoefner, S., 1996, MNRAS, 313, 605Google Scholar
Karakas, A. I., Tout, C. A., & Lattanzio, J. C., 2000, MNRAS, 316, 689CrossRefGoogle Scholar
Kilic, M., Brown, W. R., Allende Prieto, C., Agüeros, M. A., et al., 2011, ApJ, 727, 3Google Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R., 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Maoz, D., Sharon, K., & Gal-Yam, A., 2010, ApJ, 722, 1879CrossRefGoogle Scholar
Mennekens, N., Vanbeveren, D., De Greve, J. P. & De Donder, E., 2010, A&A, 515, 89Google Scholar
Miszalski, B., Acker, A., Moffat, A. F. J., Parker, Q. A., & Udalski, A., 2009, A&A, 496, 813Google Scholar
Mohamed, S. & Podsiadlowski, P., 2011, ASPC, 445, 355Google Scholar
Rebassa-Mansergas, A., Gänsicke, B. T., Schreiber, M. R., et al., 2008, MNRAS, 390, 1635Google Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C., 2009, ApJ, 699, 2026Google Scholar
Tout, C. A. & Eggleton, P. P., 1988, MNRAS, 231, 823Google Scholar
van Rensbergen, W., de Greve, J. P., Mennekens, N., et al., 2011, A&A, 528, 16Google Scholar
Webbink, R. F., 1984, ApJ, 227, 355Google Scholar