Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T03:56:08.278Z Has data issue: false hasContentIssue false

Enhancement of intestinal hydrolysis of lactose by microbial β-galactosidase (EC 3.2.1.23) of kefir

Published online by Cambridge University Press:  09 March 2007

Michael De Vrese
Affiliation:
Institut für Physiologie und Biochemie der Ernährung, Bundesanstalt für Milchforschung, Hermann-Weigmann-Str. 1, D-2300 Kiel 1, Federal Republic ofGermany
Birgit Keller
Affiliation:
Institut für Physiologie und Biochemie der Ernährung, Bundesanstalt für Milchforschung, Hermann-Weigmann-Str. 1, D-2300 Kiel 1, Federal Republic ofGermany
Christian A. Barth
Affiliation:
Institut für Physiologie und Biochemie der Ernährung, Bundesanstalt für Milchforschung, Hermann-Weigmann-Str. 1, D-2300 Kiel 1, Federal Republic ofGermany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of microbial β-galactosidase (EC 3.2.1.23) activity on intestinal lactose digestion was estimated directly by following post-prandial venous plasma galactose concentrations. To avoid superimposing effects of free galactose, as with yogurt, fresh or heat-treated suspensions of mechanically disintegrated kefir grains in kefir, containing lactose but no free galactose, were fed to ten Göttingen minipigs. Each meal contained 101·1 (SEM 0·1) mmol lactose in kefir supplemented by either native or heat-treated kefir grains corresponding to a mean β-galactosidase activity of either 72 (SEM 8) U or zero. Feeding kefir with β-galactosidase activity resulted in a 30% enhancement of the mean post-prandial plasma galactose peak concentration from 33 (SEM 7) to 43 (SEM 12) μmol/l (n 10), as well as in 23% greater mean areas under the galactose-response curves (8·1 (SEM 1·5) v. 6·6 (SEM 1·2) mmol/min per 1) if compared with kefir with heat-treated grains. Both differences were significant (P < 0·05; paired Wilcoxon test by ranks). There was no induction of intestinal β-galactosidase (EC 3.2.1.108) activity or intestinal lactose-hydrolysing bacteria by lactose feeding. These results give direct evidence of an enhanced lactose digestion and absorption in native fermented milk products due to the microbial β-galactosidase activity.

Type
Dietary Effects on Intestinal Digestion
Copyright
Copyright © The Nutrition Society 1992

References

Alm, L. (1982). Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of fermented milk products for lactose intolerant individuals. Journal of Dairy Science 65, 346352.CrossRefGoogle ScholarPubMed
Auricchio, S., Rubino, A., Landolt, M., Semenza, G. & Prader, A. (1963). Isolated intestinal lactase deficiency in the adult. Lancet i, 324326.CrossRefGoogle Scholar
Besnier, M. C., Bourlioux, P., Fourniat, J., Ducluzeau, R. & Aumaitre, A. (1983). Influence of yogurt feeding on intestinal lactase activity in germ-free or conventional mice. Annales de Microbiologie (Paris) 134A, 219230.Google Scholar
Beutler, H.-O. (1984). Lactose and D-galactose, UV-method. In Methods of Enzymatic Analysis Vol. 6, pp. 104112 [Bergmeyer, H. U. editor]. Weinheim: Verlag Chemie.Google Scholar
Boehringer Mannheim (1986). In Methoden der biochemischen Analytik und Lebensmittelanalytik. (Methods of biochemical and food analysis.) pp. 7076. Boehringer: Mannheim.Google Scholar
Buts, J.-P., Bernasconi, P., Van Craynest, M.-P., Maldague, P. & de Meyer, R. (1986). Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatric Research 20, 192196.CrossRefGoogle ScholarPubMed
Conway, P. L., Gorbach, S. L. & Goldin, B. R. (1987). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science 70, 112.CrossRefGoogle ScholarPubMed
Dahlqvist, A. (1983). Digestion of lactose. In Milk Intolerances and Rejection pp. 1116 [Delmont, J. editor]. Basel: Karger.Google Scholar
Dahlqvist, A. (1984a). Lactose intolerance. Nutrition Abstracts and Reviews 54, 649658.Google Scholar
Dahlqvist, A. (1984b). β-Galactosidase (lactase). In Methods of Enzymatic Analysis Vol. 4, pp. 227230 [Bergmeyer, H. U. editor]. Weinheim: Verlag Chemie.Google Scholar
Dahlqvist, A., Hammond, J. B., Crane, R. K., Dunphy, J. V. & Littman, A. (1963). Intestinal lactase deficiency and lactose intolerance in adults. Gastroenterology 45, 488491.CrossRefGoogle ScholarPubMed
Dewit, O., Pochart, P. & Desjeux, J. T. (1988). Breath hydrogen concentration and plasma glucose, insulin and free fatty acid levels after lactose, milk, fresh or heated yoghurt ingestion by healthy young adults with or without lactose malabsorption. Nutrition 4, 131135.Google Scholar
Engel, G. (1984). Mikrobiologische Charakterisierung von Kefir. (Microbiological characterization of kefir.) Deutsche molkerei zeitung 41, 13381340.Google Scholar
Gallagher, C. R., Molleson, A. L. & Caldwell, J. H. (1974). Lactose intolerance and fermented dairy products. Journal of the American Dietetic Association 65, 418419.CrossRefGoogle ScholarPubMed
Garvie, E. I., Cole, C. B., Fuller, R. & Hewitt, D. (1984). The effect of yoghurt on some components of the gut microflora and on the metabolism of lactose in the rat. Journal of Applied Bacteriology 56, 237245.CrossRefGoogle Scholar
Gilliland, S. E. & Kim, H. S. (1984). Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. Journal of Dairy Science 67, 16.CrossRefGoogle ScholarPubMed
Goodenough, E. R. & Kleyn, D. H. (1976). Influence of viable yogurt microflora on digestion of lactose by the rat. Journal of Dairy Science 59, 601606.CrossRefGoogle ScholarPubMed
Hestrin, S., Feingold, P. S. & Schwamm, M. (1955). β-Galactosidase (lactase) from Escherichia coli. In Methods in Enzymology, Vol. 1, pp. 241248 [Colowick, S. P. and Kaplan, N. O., editors]. New York: Academic Press.Google Scholar
Hill, M. J. (1983). Bacterial adaptation to lactase deficiency. In Milk Intolerances and Rejection pp. 2226 [Delmont, J. editor]. Basel: Karger.Google Scholar
Hirota, T. (1987). Microbiological studies on kefir grains. Report of Research Laboratory, Snow Brand, Tokyo 84, 67107.Google Scholar
Kidder, D. E. & Manners, J. M. (1980). The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. British Journal of Nutrition 43, 141153.CrossRefGoogle ScholarPubMed
Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. (1984). Yogurt – an autodigesting source of lactose. New England Journal of Medicine 310, 13.CrossRefGoogle ScholarPubMed
Kunst, A., Draeger, B. & Ziegenhorn, J. (1984). D-Glucose, UV-methods with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis Vol. 6, pp. 163172 [Bergmeyer, H. U. editor]. Weinheim: Verlag Chemie.Google Scholar
Lerebours, E., N'Djitoyap Ndam, C., Lavoine, A., Hellot, M. F., Antoine, J. M. & Colin, R. (1989). Yogurt and fermented-then-pasteurized milk: effects of short-term and long-term ingestion on lactose absorption and mucosal lactase activity in lactase-deficient subjects. American Journal of Clinical Nutrition 49, 823827.CrossRefGoogle ScholarPubMed
McGill, D. B. (1983). Diagnostic tests for lactase deficiency. In Milk Intolerances and Rejection pp. 3541 [Delmont, J. editor]. Basel: Karger.Google Scholar
Marteau, P., Flourie, B., Pochart, P., Chastang, C., Desjeux, J.-F. & Rambaud, J.-C. (1990). Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. British Journal of Nutrition 64, 7179.CrossRefGoogle Scholar
Martini, M. C., Bollweg, G. L., Levitt, M. D. & Savaiano, D. A. (1987a). Lactose digestion by yogurt β-galactosidase: influence of pH and microbial cell integrity. American Journal of Clinical Nutrition 45, 432436.CrossRefGoogle ScholarPubMed
Martini, M. C., Smith, D. E. & Savaiano, D. A. (1987b). Lactose digestion from flavored and frozen yogurts, ice milk, and ice cream by lactase-deficient persons. American Journal of Clinical Nutrition 46, 636640.CrossRefGoogle ScholarPubMed
Onwulata, C. I., Rao, D. R. & Vankineni, P. (1989). Relative efficiency of yogurt, sweet acidophilus milk, hydrolyzed-lactose milk, and a commercial lactase tablet in alleviating lactose maldigestion. American Journal of Clinical Nutrition 49, 12331237.CrossRefGoogle Scholar
Pfeuffer, M., Ahrens, F., Hagemeister, H. & Barth, C. A. (1988). Influence of casein versus soy protein isolate on lipid metabolism of minipigs. Annales of Nutrition and Metabolism 32, 8389.CrossRefGoogle ScholarPubMed
Pochart, P., Dewit, O., Desjeux, J.-F. & Bourlioux, P. (1989). Viable starter culture, β-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. American Journal of Clinical Nutrition 49, 828831.CrossRefGoogle ScholarPubMed
Savaiano, D. A., AbouElAnouar, A., Smith, D. E. & Levitt, M. D. (1984). Lactose malabsorption from yogurt, pasteurized yogurt, sweet acidophilus milk and cultured milk in lactase-deficient individuals. American Journal of Clinical Nutrition 40, 12191223.CrossRefGoogle ScholarPubMed
Schaafsma, G., Derikx, P., Dekker, P. R. & de Waard, H. (1988). Nutritional aspects of yogurt: 1. Microbial lactase activity and digestion of lactose. Netherlands Milk and Dairy Journal 42, 121134.Google Scholar