Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T07:40:13.302Z Has data issue: false hasContentIssue false

Magnetic towers and binary-formed disks: New results for planetary nebula evolution

Published online by Cambridge University Press:  30 August 2012

Martín Huarte-Espinosa
Affiliation:
Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY, 14627-0171 emails: martinhe@pas.rochester.edu; afrank@pas.rochester.edu
Adam Frank
Affiliation:
Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY, 14627-0171 emails: martinhe@pas.rochester.edu; afrank@pas.rochester.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new results of 3-D AMR MHD simulations focusing on two distinct aspects of PPN evolution. We first report new simulations of collimated outflows driven entirely by magnetic fields. These Poynting flux dominated “magnetic towers” hold promise for explaining key properties of PPN flows. Our simulations address magnetic tower evolution and stability. We also present results of a campaign of simulations to explore the development of accretion disks formed via wind capture. Our result focus on the limits of disk formation and the range of disk properties.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883 CrossRefGoogle Scholar
Carroll-Nellenback, J. J., Frank, A., Shroyer, B., & Ding, C. 2012, (in prep)Google Scholar
Cunningham, A. J., Frank, A., Varnière, P., Mitran, S., & Jones, T. W. 2009, ApJS, 182, 519 CrossRefGoogle Scholar
Dalgarno, A. & McCray, R. A. 1972, ARA&A, 10, 375 Google Scholar
de Val-Borro, M., Karovska, M., & Sasselov, D. 2009, ApJ, 700, 1148 CrossRefGoogle Scholar
Ferreira, J., Dougados, C., & Cabrit, S. 2006, AAP, 453, 785 CrossRefGoogle Scholar
Huarte-Espinosa, M., Frank, A., Blackman, E. G., Lebedev, S., & Ciardi, A. 2012, (in prep)Google Scholar
Huarte-Espinosa, M., Carroll-Nellenback, J. J., Frank, A., Blackman, E. G., & Nordhaus, J. 2012, (in prep)Google Scholar
Lebedev, S. V., et al. 2005, MNRAS, 361, 97 CrossRefGoogle Scholar
Mastrodemos, N. & Morris, M. 1998, ApJ, 497, 303 CrossRefGoogle Scholar
Miszalski, B., Jones, D., Rodríguez-Gil, P., Boffin, H. M. J., Corradi, R. L. M., & Santander-García, M. 2011, AAP, 531, A158 CrossRefGoogle Scholar
Nordhaus, J., Blackman, E. G., & Frank, A. 2007, MNRAS, 376, 599 CrossRefGoogle Scholar
Podsiadlowski, P. & Mohamed, S. 2007, Baltic Astronomy, 16, 26 Google Scholar
Pudritz, R. E., Ouyed, R., Fendt, C., & Brandenburg, A. 2007, Protostars and Planets V, 277 Google Scholar
Shibata, K. & Uchida, Y. 1986, PASJ, 38, 631 Google Scholar
Soker, N. & Rappaport, S. 2000, ApJ, 538, 241 CrossRefGoogle Scholar