Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T15:56:01.963Z Has data issue: false hasContentIssue false

Are short GRBs powered by magnetars?

Published online by Cambridge University Press:  05 September 2012

Paul T. O'Brien
Affiliation:
Department of Physics & Astronomy, University of LeicesterUniversity Road, Leicester, LE1 7RH, United Kingdom email: paul.obrien@leicester.ac.uk
Antonia Rowlinson
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands email: b.a.rowlinson@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The standard model for a short duration Gamma-Ray Burst (GRB) involves the merger of a neutron star binary system, resulting in a black hole which accretes for a brief period of time. However, some of the short-duration GRBs observed by the Swift satellite show features in their light curves which are difficult to explain in this model. As an alternative, we examine the light curves of the Swift short GRB sample to see if they can be explained by the presence of a highly magnetised, rapidly rotating pulsar, or magnetar. We find that magnetars may be present in a large fraction of short bursts, and discuss briefly how this model can be tested using the next generation of gravity-wave observatories.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abadie, J., et al. , 2010, CQGra, 27, 173001CrossRefGoogle Scholar
Corsi, A. & Mészáros, P., 2009, ApJ, 702, 1171CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C., 1992, ApJ, 392, L9CrossRefGoogle Scholar
Gehrels, N., et al. , 2004, ApJ, 611, 1005CrossRefGoogle Scholar
Gehrels, N., et al. 2005, Nature, 437, 851CrossRefGoogle Scholar
Hild, S., et al. , 2011, CQGra, 28, 094013CrossRefGoogle Scholar
Kumar, P. & Panaitescu, A., 2000, ApJ, 541, L51CrossRefGoogle Scholar
Lattimer, J. M. & Schramm, D. N., 1976, ApJ, 210, 549CrossRefGoogle Scholar
Lattimer, J. M. & Prakash, M., 2004, Science, 304, 536CrossRefGoogle Scholar
Lyons, N., O'Brien, P. T., Zhang, B., Willingale, R., Troja, E., & Starling, R. L. C., 2010, MNRAS, 402, 705CrossRefGoogle Scholar
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E., 2011, MNRAS, 413, 2031CrossRefGoogle Scholar
Morrison, I. A., Baumgarte, T. W., & Shapiro, S. L., 2004, ApJ, 610, 941CrossRefGoogle Scholar
Nousek, J. A., et al. , 2006, ApJ, 642, 389CrossRefGoogle Scholar
Novak, J., 1998, Phys. Rev. D, 57, 4789Google Scholar
O'Brien, P. T., et al. , 2006, ApJ, 647, 1213Google Scholar
Ozel, F., Psaltis, D., Ransom, S., Demorest, P., & Alford, M., 2010, ApJ, 724, L199CrossRefGoogle Scholar
Rowlinson, A., et al. 2010, MNRAS, 409, 531CrossRefGoogle Scholar
Thompson, T. A., 2007, Rev. Mexicana AyA, 27, 80Google Scholar
Troja, E., et al. , 2007, ApJ, 665, 599CrossRefGoogle Scholar
Usov, V. V., 1992, Nature, 357, 472Google Scholar
Zhang, B. & Mészáros, P., 2001, ApJ, 552, L35CrossRefGoogle Scholar