Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T13:10:26.105Z Has data issue: false hasContentIssue false

An empirical spectral library of chemically well characterized stars for stellar population modelling

Published online by Cambridge University Press:  17 August 2012

André de Castro Milone
Affiliation:
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos, SP 12227-010, Brazil email: andre.milone@inpe.br
Anne E. Sansom
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancs PR1 2HE, UK
Patricia Sánchez-Blázquez
Affiliation:
Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco 28409, Madrid, Spain
Alexandre Vazdekis
Affiliation:
Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
Jesus Falcón-Barroso
Affiliation:
Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
Carlos Allende Prieto
Affiliation:
Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the goal of assembling a new generation of more realistic single stellar population (SSP) models, we have obtained magnesium abundances for nearly 80% of the stars of the widely employed MILES empirical spectral library. Additional spectroscopic observations of carefully selected stars have recently been obtained to improve the parametric coverage of this library. Here we report on: (i) the framework of Mg abundance determination carried out at mid-resolution, (ii) the newly acquired data, and (iii) the preliminary steps towards modelling stellar populations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Borkova, T. V. & Marsakov, V. A. 2005, AZh, 82, 453Google Scholar
Cenarro, J., Peletier, R. F., Sánchez-Blázquez, P., et al. 2007, MNRAS, 374, 664CrossRefGoogle Scholar
Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89CrossRefGoogle Scholar
Falcón-Barroso, J., Sánchez-Blázquez, P., Vazdekis, A., et al. 2011, A&A, 532A, 95F.Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951Google Scholar
Kurucz, R. 1995, An Atomic and Molecular Data Bank for Stellar Spectroscopy, SAO, Cambridge.Google Scholar
McWilliam, A. 1997, ARAA, 35, 503CrossRefGoogle Scholar
Milone, A. de C., Sansom, A. E., & Sánchez-Blázquez, P. 2011, MNRAS, 414, 1227CrossRefGoogle Scholar
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006, MNRAS, 371, 703CrossRefGoogle Scholar
Soubiran, C., Le Campion, J.-F., Cayrel de Strobel, G., & Caillo, A. 2010, A&A, 515, 111Google Scholar
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639Google Scholar