Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T05:19:04.324Z Has data issue: false hasContentIssue false

Masers as evolutionary tracers of high-mass star formation

Published online by Cambridge University Press:  24 July 2012

Shari L. Breen
Affiliation:
CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia email: Shari.Breen@csiro.au
Simon P. Ellingsen
Affiliation:
School of Mathematics and Physics, University of Tasmania, GPO Box 37, Hobart, Tasmania 7000, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determining an evolutionary clock for high-mass star formation is an important step towards realising a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. We have carried out detailed studies of a large number of sources suspected of undergoing high-mass star formation and have found that common maser transitions offer the best opportunity to determine an evolutionary scheme for these objects. We have investigated the relative evolutionary phases of massive star formation associated with the presence or absence of combinations of water, methanol and main-line hydroxyl masers. The locations of the different maser species have been compared with the positions of 1.2 mm dust clumps, radio continuum, GLIMPSE point sources and Extended Green Objects. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species in high-mass star formation regions. We present our proposed sequence for the presence of the common maser species associated with young high-mass stars and highlight recent advances. We discuss future investigations that will be made in this area by comparing data from the Methanol Multibeam (MMB) Survey with chemical clocks from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Breen, S. L., Ellingsen, S. P., Caswell, J. L., & Lewis, B. E., 2010a, MNRAS, 401, 2219CrossRefGoogle Scholar
Breen, S. L., Ellingsen, S. P., Caswell, J. L., & Phillips, C. J., 2010b, MNRAS, 733, 406, 1487Google Scholar
Breen, S. L., Ellingsen, S. P., Caswell, J. L., Green, J. A., et al. , 2011, ApJ, 733, 80CrossRefGoogle Scholar
Breen, S. L. & Ellingsen, S. P., 2011, MNRAS, 416, 178Google Scholar
Breen, S. L., Ellingsen, S. P., Caswell, J. L., Green, J. A., et al. , 2012, MNRAS, 421, 2511CrossRefGoogle Scholar
Caswell, J. L., Fuller, G. A., Green, J. A., Avison, A., et al. , 2010, MNRAS, 404, 1029CrossRefGoogle Scholar
Caswell, J. L., Fuller, G. A., Green, J. A., Avison, A., et al. , 2011, MNRAS, 417, 1964CrossRefGoogle Scholar
Cragg, D. M., Sobolev, A. M., & Godfrey, P. D., 2005, MNRAS, 360, 533CrossRefGoogle Scholar
Ellingsen, S. P., 2006, ApJ, 638, 241CrossRefGoogle Scholar
Ellingsen, S. P., et al. , 2007, in Chapman, J. M., Baan, W. A., eds., Proc. IAU Symp., 242, Astrophysical Masers and their Environments. Cambridge Univ. Press, Cambridge, p. 213Google Scholar
Ellingsen, S. P., Breen, S. L., Sobolev, A. M., Voronkov, M. A., et al. , 2011, ApJ, 742, 109CrossRefGoogle Scholar
Fontani, F., Cesaroni, R., & Furuya, R. S., 2010, A&A, 517, 56Google Scholar
Forster, J. R. & Caswell, J. L., 1989, A&A, 213, 339Google Scholar
Foster, J. B., Jackson, J. M., Barnes, P. J., & Barris, E., 2011, ApJS, 197, 25CrossRefGoogle Scholar
Garay, G. & Lizano, S., 1999, PASP, 111, 1049CrossRefGoogle Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., Avison, A. et al. , 2009, MNRAS, 392, 783CrossRefGoogle Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., Avison, A. et al. , 2010, MNRAS, 409, 913CrossRefGoogle Scholar
Green, J. A., Caswell, J. L., McClure-Griffiths, N., Avison, A. et al. , 2011, ApJ, 733, 27CrossRefGoogle Scholar
Green, J. A., Caswell, J. L., Fuller, G. A., Avison, A. et al. , 2012, MNRAS, 420, 3108CrossRefGoogle Scholar
Lee, J.-E., Bergin, E. A., & Evanse, N. J., 2004, ApJ, 617, 360CrossRefGoogle Scholar
Longmore, S. N., et al. , 2007, MNRAS, 379, 535CrossRefGoogle Scholar
Minier, V., Ellingsen, S. P., Norris, R. P., & Booth, R. S., 2003, A&A, 403, 1095Google Scholar
Schuller, F., Menten, K., Contreras, K. M., & Wyrowski, F., 2009, A&A, 504, 415Google Scholar
Szymczak, M., Bartkiewicz, A., & Richards, A. M. S., 2007, ApJ, 706, 1609Google Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., & Sobolev, A. M., 2010, MNRAS, 405, 2471Google Scholar
Walsh, A. J., Burton, M. G., Hyland, A. R., & Robinson, G., 1998, MNRAS, 301, 640CrossRefGoogle Scholar
Wu, Y. W., Xu, Y., Pandian, J. D., Yang, J., et al. , 2010, ApJ, 720, 392CrossRefGoogle Scholar