Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T15:56:07.562Z Has data issue: false hasContentIssue false

Evolution of a very complex active region during the decay phase of Cycle 23

Published online by Cambridge University Press:  05 July 2012

Mariano Poisson
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67 Suc 28, 1428 Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
Marcelo López Fuentes
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67 Suc 28, 1428 Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
Cristina H. Mandrini
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67 Suc 28, 1428 Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
Pascal Démoulin
Affiliation:
Observatoire de Paris, LESIA, 92195 Meudon, France
Etienne Pariat
Affiliation:
Observatoire de Paris, LESIA, 92195 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the emergence and evolution of AR NOAA 10314, observed on the solar disk during March 13-19, 2003. This extremely complex AR is of particular interest due to its unusual magnetic flux distribution and the clear rotation of the polarities of a δ-spot within the AR. Using SOHO/MDI magnetograms we follow the evolution of the photospheric magnetic flux to infer the morphology of the structure that originates the AR. We determine the tilt angle variation for the δ-spot and find a counter-clockwise rotation corresponding to a positive writhed flux tube. We compute the magnetic helicity injection and the total accumulated helicity in the AR and find a correlation with the observed rotation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Fan, Y. 2009, Living Reviews in Solar Physics, 6, 4Google Scholar
Linton, M. G., Dahlburg, R. B., Fisher, G. H., & Longcope, D. W. 1998, ApJ, 507, 404CrossRefGoogle Scholar
Liu, C., Deng, N., & Liu, Y. et al. , 2005, ApJ, 622, 722CrossRefGoogle Scholar
López Fuentes, M. C., Démoulin, P., Mandrini, C. H., Pevtsov, A. A., & van Driel-Gesztelyi, L. 2003, A&A, 397, 305Google Scholar
Pariat, E., Démoulin, P., & Berger, M. A. 2005, A&A, 439, 1191Google Scholar
Poisson, M., López Fuentes, M., Mandrini, C. H., Démoulin, P., & Pariat, E. 2011, submitted to Adv. Space Res.Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I. et al. , 1995, Sol. Phys., 162, 129Google Scholar
Schuck, P. W. 2005, ApJ, 632, L53CrossRefGoogle Scholar
Schuck, P. W. 2006, ApJ, 646, 1358CrossRefGoogle Scholar
Szajko, N., Cristiani, G., Mandrini, C. H., & DalLago, A. Lago, A. 2011, this volumeGoogle Scholar