Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T04:09:05.079Z Has data issue: false hasContentIssue false

Towards the reconstruction of the EUV irradiance for solar Cycle 23

Published online by Cambridge University Press:  05 July 2012

Margit Haberreiter*
Affiliation:
Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, 7260 Davos Dorf, Switzerland email: margit.haberreiter@pmodwrc.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present preliminary reconstructions of the EUV from 26 to 34 nm from February 1997 to May 2005, covering most of solar cycle 23. The reconstruction is based on synthetic EUV spectra calculated with the spectral synthesis code Solar Modeling in 3D (SolMod3D). These spectra are weighted by the relative area coverage of the coronal features as identified from EIT images. The calculations are based on one-dimensional atmospheric structures that represent a temporal and spatial mean of the chromosphere, transition region, and corona. The employed segmentation analysis considers coronal holes, the quiet corona, and active regions identified on the solar disk. The reconstructed EUV irradiance shows a good agreement with observations taken with the CELIAS/SEM instrument onboard SOHO. Further improvement of the reconstruction including more solar features as well as the off-limb detection of activity features will be addressed in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Barra, V., Delouille, V., Kretzschmar, M., & Hochedez, J. 2009, A&A, 505, 361Google Scholar
Delaboudinière, J.-P., Artzner, G. E., Brunaud, J. et al. , 1995, Solar Phys., 162, 291CrossRefGoogle Scholar
Didkovsky, L. V., Judge, D. L., Wieman, S. R., & McMullin, D. 2010, in: Cranmer, S. R., Hoeksema, J. T., & Kohl, J. L. (eds.), SOHO-23: Understanding a Peculiar Solar Minimum, Astronomical Society of the Pacific Conference Series, Vol. 428, p. 73Google Scholar
Dudok de Wit, T., Kretzschmar, M., Lilensten, J., & Woods, T. 2009, GRL, 36, 10107CrossRefGoogle Scholar
Ermolli, I., Criscuoli, S., Centrone, M., Giorgi, F., & Penza, V. 2007, A&A, 465, 305Google Scholar
Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J., & Tian, H. 2009, ApJ, 707, 482CrossRefGoogle Scholar
Haberreiter, M. 2011, Solar Phys., 274, 473CrossRefGoogle Scholar
Haberreiter, M., Krivova, N. A., Schmutz, W., & Wenzler, T. 2005, Adv. Sp. Res, 35, 365CrossRefGoogle Scholar
Hovestadt, D., Hilchenbach, M., Bürgi, A. et al. , 1995, Solar Phys., 162, 441CrossRefGoogle Scholar
Kretzschmar, M., Dudok de Wit, T., Lilensten, J. et al. , 2009, Acta Geophysica, 57, 42CrossRefGoogle Scholar
Lean, J. L., Woods, T. N., Eparvier, F. G. et al. , 2011, JGR, 116, 1102Google Scholar
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., & Nyeki, S. 2011, A&A, 529, A67Google Scholar
Solomon, S. C., Woods, T. N., Didkovsky, L. V., Emmert, J. T., & Qian, L. 2010, GRL, 37, 16103Google Scholar
Thuillier, G., Claudel, J., Djafer, D. et al. , 2011, Solar Phys., 268, 125CrossRefGoogle Scholar
Tobiska, W. K., Woods, T., Eparvier, F. et al. , 2000, Journal of Atmospheric and Solar-Terr. Phys., 62, 1233CrossRefGoogle Scholar
Warren, H. P. 2006, Ad. Sp. Res, 37, 359CrossRefGoogle Scholar