Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T15:38:10.661Z Has data issue: false hasContentIssue false

Composition of massive giant planets

Published online by Cambridge University Press:  10 November 2011

Ravit Helled
Affiliation:
Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA
Peter Bodenheimer
Affiliation:
University of California, Santa Cruz, CA 95064, USA
Jack J. Lissauer
Affiliation:
NASA-Ames Research Center, Moffett Field, CA 94035, USA email: rhelled@ucla.edu or r.helled@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The two current models for giant planet formation are core accretion and disk instability. We discuss the core masses and overall planetary enrichment in heavy elements predicted by the two formation models, and show that both models could lead to a large range of final compositions. For example, both can form giant planets with nearly stellar compositions. However, low-mass giant planets, enriched in heavy elements compared to their host stars, are more easily explained by the core accretion model. The final structure of the planets, i.e., the distribution of heavy elements, is not firmly constrained in either formation model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bodenheimer, P., Grossman, A. S., Decampli, W. M., Marcy, G., & Pollack, J. B. 1980, Icarus, 41, 293CrossRefGoogle Scholar
Boss, A. P. 1997, Science, 276, 1836CrossRefGoogle Scholar
Decampli, W. M. & Cameron, A. G. W. 1979, Icarus, 38, 367CrossRefGoogle Scholar
Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., & Rice, W. K. M. 2007, in Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), Univ. of Arizona Press, Tucson, 607Google Scholar
Guillot, T. 2008, in Nobel Symposium 135, Physica Scripta, 130, 014023Google Scholar
Helled, R. & Bodenheimer, P. 2010, Icarus, 207, 503CrossRefGoogle Scholar
Helled, R. & Bodenheimer, P. 2011, Icarus, 211, 939CrossRefGoogle Scholar
Helled, R., Podolak, M., & Kovetz, A. 2006, Icarus, 185, 64Google Scholar
Helled, R., Podolak, M., & Kovetz, A. 2008, Icarus, 195, 863CrossRefGoogle Scholar
Helled, R. & Schubert, G. 2008, Icarus, 198, 156CrossRefGoogle Scholar
Helled, R. & Schubert, G. 2009, ApJ, 697, 1256Google Scholar
Iaroslavitz, E. & Podolak, M. 2007, Icarus, 187, 600CrossRefGoogle Scholar
Lissauer, J. J. 1987, Icarus, 69, 249Google Scholar
Lissauer, J. J. 1993, ARA&A, 31, 129Google Scholar
Lissauer, J. J. & Stevenson, D. J. 2007, in Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, Tucson, 591Google Scholar
Lissauer, J. J., Hubickyj, O., D'Angelo, G., & Bodenheimer, P. 2009, Icarus, 199, 338CrossRefGoogle Scholar
Marois, C., Macintosh, B., Barman, T., et al. 2008, Science, 322, 1348CrossRefGoogle Scholar
Movshovitz, N., Bodenheimer, P., Podolak, M., & Lissauer, J. J. 2010, Icarus, 209, 616CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Safronov, V. S. 1969, Evolution of the Protoplanetary Cloud and the Formation of the Earth and Planets (Nauka, Moscow)Google Scholar