Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T22:00:27.943Z Has data issue: false hasContentIssue false

The debris disk – terrestrial planet connection

Published online by Cambridge University Press:  10 November 2011

Sean N. Raymond
Affiliation:
Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France email: rayray.sean@gmail.com CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France
Philip J. Armitage
Affiliation:
JILA, University of Colorado, Boulder CO 80309, USA Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309, USA
Amaya Moro-Martín
Affiliation:
Departamento de Astrofisica, CAB (CSIC-INTA), Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz, 28850, Madrid, Spain Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544, USA
Mark Booth
Affiliation:
Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK
Mark C. Wyatt
Affiliation:
Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK
John C. Armstrong
Affiliation:
Department of Physics, Weber State University, Ogden, UT, USA
Avi M. Mandell
Affiliation:
NASA Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA
Franck Selsis
Affiliation:
Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France email: rayray.sean@gmail.com CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities – those with very eccentric surviving giant planets – completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at λ ~ 70μm) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, F. C. & Laughlin, G. 2003, Icarus, 163, 290Google Scholar
Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., & Levison, H. F. 2009, MNRAS, 399, 385Google Scholar
Butler, R. P., et al. 2006, ApJ, 646, 505Google Scholar
Carpenter, J. M., et al. 2009, ApJS, 181, 197Google Scholar
Chambers, J. E. 1999, MNRAS, 304, 793Google Scholar
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icarus, 119, 261Google Scholar
Chambers, J. E. 2004, Earth and Planetary Science Letters, 223, 241Google Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580Google Scholar
Dohnanyi, J. S. 1969, JGR, 74, 2531Google Scholar
Fogg, M. J. & Nelson, R. P. 2007, A&A, 461, 1195Google Scholar
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. 2001, ApJL, 553, L153Google Scholar
Howard, A. W., et al. 2010, Science, 330, 653Google Scholar
Iwasaki, K., Tanaka, H., Nakazawa, K., & Hiroyuki, E. 2001, PASJ, 53, 321Google Scholar
Jurić, M. & Tremaine, S. 2008, ApJ, 686, 603Google Scholar
Kenyon, S. J. & Bromley, B. C. 2006, AJ, 131, 1837Google Scholar
Kenyon, S. J. & Luu, J. X. 1998, AJ, 115, 2136Google Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. 2007, ApJ, 660, 823Google Scholar
Marzari, F. & Weidenschilling, S. J. 2002, Icarus, 156, 570Google Scholar
Mayor, M., et al. 2009, A&A, 507, 487Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. 2010, AJ, 140, 1391Google Scholar
Moro-Martín, A., et al. 2007, ApJ, 658, 1312Google Scholar
Moro-Martín, A., Malhotra, R., Bryden, G., Rieke, G. H., Su, K. Y. L., Beichman, C. A., & Lawler, S. M. 2010, ApJ, 717, 1123Google Scholar
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954Google Scholar
Raymond, S. N., Armitage, P. J., & Gorelick, N. 2010, ApJ, 711, 772Google Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413Google Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644Google Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1Google Scholar
Spiegel, D. S., Raymond, S. N., Dressing, C. D., Scharf, C. A., & Mitchell, J. L. 2010, ApJ, 721, 1308Google Scholar
Trilling, D. E., et al. 2008, ApJ, 674, 1086Google Scholar
Veras, D. & Armitage, P. J. 2006, ApJ, 645, 1509Google Scholar
Weidenschilling, S. J. & Marzari, F. 1996, Nature, 384, 619Google Scholar
Wyatt, M. C. 2008, ARA&A, 46, 339Google Scholar
Zakamska, N. L., Pan, M., & Ford, E. B. 2011, MNRAS, 410, 1895Google Scholar