Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T15:10:19.972Z Has data issue: false hasContentIssue false

Dipolar and Quadrupolar Magnetic Field Evolution over Solar Cycles 21, 22, and 23

Published online by Cambridge University Press:  12 August 2011

M. L. DeRosa
Affiliation:
Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304USA email: derosa@lmsal.com
A. S. Brun
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/Irfu Université Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette, France
J. T. Hoeksema
Affiliation:
Hansen Experimental Physics Laboratory, Stanford University, 466 Via Ortega, Stanford, CA 94305USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time series of photospheric magnetic field maps from two observatories, along with data from an evolving surface-flux transport model, are decomposed into their constituent spherical harmonic modes. The evolution of these spherical harmonic spectra reflect the modulation of bipole emergence rates through the solar activity cycle, and the subsequent dispersal, shear, and advection of magnetic flux patterns across the solar photosphere. In this article, we discuss the evolution of the dipolar and quadrupolar modes throughout the past three solar cycles (Cycles 21–23), as well as their relation to the reversal of the polar dipole during each solar maximum, and by extension to aspects of the operation of the global solar dynamo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJL, 648, L157CrossRefGoogle Scholar
Charbonneau, P. 2005, Liv. Rev. Solar Phys., 2, 2Google Scholar
Hathaway, D. H. 2010, Liv. Rev. Solar Phys., 7, 1CrossRefGoogle Scholar
Hoeksema, J. T. 2010, in Kosovichev, A. G., Andrei, A. H., & Roelot, J.-P. (eds.), Solar and Stellar Variability: Impact on Earth and Planets, Proc. IAU Symposium 264 (Cambridge: Cambridge Univ. Press), p. 222Google Scholar
Leonhardt, R. & Fabian, K. 2007, Earth Planet. Sci. Lett., 253, 172CrossRefGoogle Scholar
McFadden, P. L., Merrill, R. T., McElhinny, M. W., & Lee, S. 1991, JGR, 96, 3923CrossRefGoogle Scholar
Pesnell, W. D. 2008, Solar Phys., 252, 209CrossRefGoogle Scholar
Scherrer, P. H. et al. 1995, Solar Phys., 162, 129CrossRefGoogle Scholar
Schrijver, C. J. 2001, ApJ, 547, 475CrossRefGoogle Scholar
Schrijver, C. J. & De Rosa, M. L. 2003, Solar Phys., 212, 165CrossRefGoogle Scholar
Wang, Y., Biersteker, J. B., Sheeley, N. R. Jr., Koutchmy, S., Mouette, J., & Druckmüller, M. 2007, ApJ, 660, 882CrossRefGoogle Scholar