Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T07:09:17.363Z Has data issue: false hasContentIssue false

Particle acceleration in Blazars

Published online by Cambridge University Press:  08 June 2011

Matthias Weidinger
Affiliation:
Lehrstuhl für Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany email: mweidinger@astro.uni-wuerzburg.de
Felix Spanier
Affiliation:
Lehrstuhl für Astronomie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany email: fspanier@astro.uni-wuerzburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the variable emission of blazars observed with gamma-ray telescopes and Fermi has become a major challenge for theoretical models of particle acceleration. Here, we introduce a novel time-dependent emission model in which the maximum energy of particles is determined from a balance between Fermi type I and II acceleration energy gains and radiative energy losses, allowing for an explanation of both the characteristic spectral energy distribution of blazars and their intrinsic sub-hour variability. Additionally, we can determine the physical condition of the emitting plasma concerning its turbulence and typical shock speeds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aharonian, et al. . 2007, The Astrophysical Journal Letters, 664 L71CrossRefGoogle Scholar
Aharonian, et al. . 2009, The Astrophysical Journal Letters, 696, L150CrossRefGoogle Scholar
Albert, et al. . 2010, The Astrophysical Journal Letters, 642, L119CrossRefGoogle Scholar
Chiang, J. & Böttcher, M. 2002, The Astrophysical Journal, 564, 92CrossRefGoogle Scholar
Donato, D. et al. . 2005, Astronomy & Astrophysics, 433, 1163CrossRefGoogle Scholar
Fossati, G. et al. . 1998, Bulletin of the American Astronomical Society, 30, 768Google Scholar
Ghisellini, G. 1988, Advances in Space Research, 8, 579CrossRefGoogle Scholar
Kirk, et al. . 1998, Astronomy & Astrophysics, 333, 452Google Scholar
Lerche, I. & Schlickeiser, R. 1985, Astronomy & Astrophysics, 151, 408Google Scholar
Mannheim, K. 1993, Astronomy & Astrophysics, 269, 67Google Scholar
Rüger, M., Spanier, F. & Mannheim, K. 2010, Mon. Not. R. Astron. Soc., 401, 973CrossRefGoogle Scholar
Schlickeiser, R. 2002, Cosmic Ray Astrophysics, Springer, BerlinCrossRefGoogle Scholar
Spitkovsky, A. 2008, The Astrophysical Journal Letters, 682, L5CrossRefGoogle Scholar
The VERITAS collaboration 2010, The Astrophysical Journal Letters, 709, L163CrossRefGoogle Scholar
Tramacere, A. et al. . 2007, Astronomy & Astrophysics, 467, 501CrossRefGoogle Scholar
Urry, C. M. & Padovani, P. 1995, Publ. Astron. Soc. Pac., 107, 803CrossRefGoogle Scholar
Weidinger, M., Rüger, M. & Spanier, F. 2010, Astrophysics and Space Sciences Trans., 6, 1CrossRefGoogle Scholar
Weidinger, M. & Spanier, F. 2010a, Astronomy & Astrophysics, 515, A18CrossRefGoogle Scholar
Weidinger, M. & Spanier, F. 2010b, Int. J. Mod. Phys. D, 19, 887CrossRefGoogle Scholar