Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:04:35.641Z Has data issue: false hasContentIssue false

Theory of the Star Formation Rate

Published online by Cambridge University Press:  27 April 2011

Paolo Padoan
Affiliation:
ICREA & ICC, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain email: ppadoan@icc.ub.edu
Åke Nordlund
Affiliation:
Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100, Copenhagen, Denmark email: aake@nbi.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work presents a new physical model of the star formation rate (SFR), tested with a large set of numerical simulations of driven, supersonic, self-gravitating, magneto-hydrodynamic (MHD) turbulence, where collapsing cores are captured with accreting sink particles. The model depends on the relative importance of gravitational, turbulent, magnetic, and thermal energies, expressed through the virial parameter, αvir, the rms sonic Mach number, S,0, and the ratio of mean gas pressure to mean magnetic pressure, β0. The SFR is predicted to decrease with increasing αvir (stronger turbulence relative to gravity), and to depend weakly on S,0 and β0, for values typical of star forming regions (S,0≈4-20 and β0≈1-20). The star-formation simulations used to test the model result in an approximately constant SFR, after an initial transient phase. Both the value of the SFR and its dependence on the virial parameter found in the simulations agree very well with the theoretical predictions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

André, P., et al. 2010, arXiv:1005.2618Google Scholar
Beetz, C., Schwarz, C., Dreher, J., & Grauer, R. 2008, Physics Letters A, 372, 3037CrossRefGoogle Scholar
Bertoldi, F. & McKee, C. F. 1992, ApJ, 395, 140CrossRefGoogle Scholar
Bonnor, W. B. 1956, MNRAS, 116, 351CrossRefGoogle Scholar
Brunt, C. M., Federrath, C., & Price, D. J. 2010, MNRAS, 403, 1507CrossRefGoogle Scholar
Crutcher, R. M. 1999, ApJ, 520, 706CrossRefGoogle Scholar
Ebert, R. 1957, Zeitschrift fur Astrophysik, 42, 263Google Scholar
Elmegreen, B. G. 2000, ApJ, 530, 277CrossRefGoogle Scholar
Elmegreen, B. G. 2007, ApJ, 668, 1064CrossRefGoogle Scholar
Evans, N. J., et al. 2009, ApJ, 181, 321Google Scholar
Falgarone, E., Troland, T. H., Crutcher, R. M., & Paubert, G. 2008, A&A, 487, 247Google Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJL, 688, L79CrossRefGoogle Scholar
Gnedin, N. Y., & Kravtsov, A. V. 2010, ApJ, 714, 287CrossRefGoogle Scholar
Gnedin, N. Y., Tassis, K., & Kravtsov, A. V. 2009, ApJ, 697, 55CrossRefGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092CrossRefGoogle Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416CrossRefGoogle Scholar
Kritsuk, A. G., Ustyugov, S. D., Norman, M. L., & Padoan, P. 2009, Journal of Physics Conference Series, 180, 012020CrossRefGoogle Scholar
Kritsuk, A. G., Ustyugov, S. D., Norman, M. L., & Padoan, P. 2009b, arXiv:0912.0546Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250CrossRefGoogle Scholar
Krumholz, M. R. & Tan, J. C. 2007, textitApJ, 654, 304Google Scholar
Li, P. S., Norman, M. L., Mac Low, M.-M., & Heitsch, F. 2004, ApJ, 605, 800CrossRefGoogle Scholar
Matzner, C. D. & McKee, C. F. 2000, ApJ, 545, 364CrossRefGoogle Scholar
McKee, C. F. 1989, ApJ, 345, 782CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Nakano, T. & Nakamura, T. 1978, PASJ, 30, 671Google Scholar
Nordlund, Å. & Padoan, P. 1999, in: Franco, J. & Carramiñana, A. (eds.), Interstellar Turbulence (Cambridge University Press), p. 218CrossRefGoogle Scholar
Padoan, P. 1995, MNRAS, 277, 377CrossRefGoogle Scholar
Padoan, P., Juvela, M., Goodman, A. A. & Nordlund, Å. 2001, ApJ, 553, 227CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 1999, ApJ, 526, 279CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 2002, ApJ, 576, 870CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 2004, ApJ, 617, 559CrossRefGoogle Scholar
Padoan, P., Nordlund, Å., & Jones, B. 1997, MNRAS, 288, 145CrossRefGoogle Scholar
Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730CrossRefGoogle Scholar
Tomisaka, K., Ikeuchi, S., & Nakamura, T. 1988, ApJ, 335, 239CrossRefGoogle Scholar
Troland, T. H. & Crutcher, R. M. 2008, ApJ, 680, 457CrossRefGoogle Scholar
Vazquez-Semadeni, E. 1994, ApJ, 423, 681CrossRefGoogle Scholar
Vázquez-Semadeni, E., Ballesteros-Paredes, J., & Klessen, R. S. 2003, ApJL, 585, L131CrossRefGoogle Scholar
Vázquez-Semadeni, E., Kim, J., & Ballesteros-Paredes, J. 2005, ApJL, 630, L49CrossRefGoogle Scholar
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166CrossRefGoogle Scholar
Zuckerman, B. & Palmer, P. 1974, ARAA, 12, 279CrossRefGoogle Scholar