Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T22:26:33.402Z Has data issue: false hasContentIssue false

Discs, outflows, and feedback in collapsing magnetized cores

Published online by Cambridge University Press:  27 April 2011

Dennis F. Duffin
Affiliation:
Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1, Canada email: duffindf@mcmaster.ca
Ralph E. Pudritz
Affiliation:
Origins Institue, McMaster UniversityHamilton ON, L8S 4M1, Canada email: pudritz@physics.mcmaster.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pre-stellar cores in which low mass stars form are generally well magnetized. Our simulations show that early protostellar discs are massive and experience strong magnetic torques in the form of magnetic braking and protostellar outflows. Simulations of protostellar disk formation suggest that these torques are strong enough to suppress a rotationally supported structure from forming for near critical values of mass-to-flux. We demonstrate through the use of a 3D adaptive mesh refinement code – including cooling, sink particles and magnetic fields – that one produces transient 1000 AU discs while simultaneously generating large outflows which leave the core region, carrying away mass and angular momentum. Early inflow/outflow rates suggest that only a small fraction of the mass is lost in the initial magnetic tower/jet event.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Banerjee, R. & Pudritz, R. E. 2006, ApJ, 641, 949CrossRefGoogle Scholar
Banerjee, R., Pudritz, R. E., & Anderson, D. W. 2006, MNRAS, 373, 1091CrossRefGoogle Scholar
Banerjee, R., Pudritz, R. E., & Holmes, L. 2004, MNRAS, 355, 248CrossRefGoogle Scholar
Basu, S. & Mouschovias, T. C. 1994, ApJ, 432, 720CrossRefGoogle Scholar
Bonnor, W. B. 1956, MNRAS, 116, 351CrossRefGoogle Scholar
Crutcher, R. M. 1999, ApJ, 520, 706CrossRefGoogle Scholar
Duffin, D. F. & Pudritz, R. E. 2008, MNRAS, 391, 1659CrossRefGoogle Scholar
Duffin, D. F. & Pudritz, R. E. 2009, ApJL, 706, L46CrossRefGoogle Scholar
Ebert, R. 1955, Zeitschrift fur Astrophysik, 37, 217Google Scholar
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, ApJ, 713, 269CrossRefGoogle Scholar
Fryxell, B., et al. 2000, ApJs, 131, 273CrossRefGoogle Scholar
Hennebelle, P. & Fromang, S. 2008, A&A, 477, 9Google Scholar
Hennebelle, P. & Teyssier, R. 2008, A&A, 477, 25Google Scholar
Hosking, J. G. & Whitworth, A. P. 2004, MNRAS, 347, 1001CrossRefGoogle Scholar
Krasnopolsky, R., Li, Z., & Shang, H. 2010, ApJ, 716, 1541CrossRefGoogle Scholar
Lai, D. 2003, ApJL, 591, L119CrossRefGoogle Scholar
Machida, M. N., Inutsuka, S., & Matsumoto, T. 2010, ArXiv e-printsGoogle Scholar
Machida, M. N., Matsumoto, T., Hanawa, T., & Tomisaka, K. 2005 a, MNRAS, 362, 382CrossRefGoogle Scholar
Machida, M. N., Matsumoto, T., Tomisaka, K., & Hanawa, T. 2005 b, MNRAS, 362, 369CrossRefGoogle Scholar
Machida, M. N., Tomisaka, K., & Matsumoto, T. 2004, MNRAS, 348, L1CrossRefGoogle Scholar
Matzner, C. D. & McKee, C. F. 2000, ApJ, 545, 364CrossRefGoogle Scholar
Mellon, R. R. & Li, Z.-Y. 2008, ApJ, 681, 1356CrossRefGoogle Scholar
Mellon, R. R. & Li, Z.-Y. 2009, ApJ, 698, 922CrossRefGoogle Scholar
Price, D. J. & Bate, M. R. 2007, MNRAS, 377, 77CrossRefGoogle Scholar
Pudritz, R. E., Ouyed, R., Fendt, C., & Brandenburg, A. 2007, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K., 277–294Google Scholar
Tilley, D. A. & Pudritz, R. E. 2007, MNRAS, 382, 73CrossRefGoogle Scholar