Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T07:57:46.818Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Single-crystal CVD Diamond Current Amplifier

Published online by Cambridge University Press:  09 March 2011

Joan E. Yater
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Jonathan L. Shaw
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Kevin L. Jensen
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, U.S.A.
Tatyana Feygelson
Affiliation:
SAIC, Washington, DC 20003, U.S.A.
Robert E. Myers
Affiliation:
Beam-Wave Research Inc., Bethesda, MD 20814, U.S.A.
Bradford B. Pate
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375, U.S.A.
James E. Butler
Affiliation:
SAIC, Washington, DC 20003, U.S.A.
Get access

Abstract

High-current-density cathodes are required for the development of high-power mm-wave and upper mm-wave devices, as well as for other electron beam applications. To address this need, a current amplifier stage is being developed that will multiply a primary electron-beam current (via the secondary-electron multiplication process) and then emit the amplified beam so as to achieve a current gain of 50-100. Diamond is a particularly promising current amplification source due to the negative electron affinity present at stable hydrogenated surfaces. As such, we are fabricating current amplifiers using single-crystal CVD diamond grown at NRL, with our growth effort focused on reducing the impurity concentration in the epitaxial diamond and on fabricating microns-thick freestanding films. The current amplification characteristics of the diamond films are examined using secondary-electron-emission measurements in both reflection and transmission configurations. In our initial study of an 8.3-µm-thick CVD diamond film, the single-crystal diamond is shown to have superior transport and emission properties compared to similar polycrystalline material. While transmission gains have been obtained under field-free conditions from the unbiased diamond film, we are striving to increase the gain by increasing the transport efficiency in a biased amplifier structure. Towards this end, recent efforts have focused on optimizing the bonding and metallization processes as needed to establish and control the internal electric field. In addition, Monte Carlo simulations are being used to predict the optimal material and device parameters needed to achieve high amplifier gain and low energy spread.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Himpsel, F.J., Knapp, J.A., Van Vechten, J.A., and Eastman, D.E., Phys. Rev. B 20, 624 (1979).Google Scholar
2. Qiu, J.X., Levush, B., Pasour, J., Katz, A., Armstrong, C.M., Whaley, D.R., Tucek, J., Kreischer, K., and Gallagher, D., IEEE Microwave Magazine 10, 38 (2009).Google Scholar
3. Yater, J.E., Shaw, J.L., Jensen, K.L., Feygelson, T., Myers, R.E., Pate, B.B., and Butler, J.E., submitted to Diamond Rel. Mater. (2010).Google Scholar
4. Ben-Zvi, I., Rao, T., Burrill, A., Chang, X., Grimes, J., Rank, J., Segalov, Z., and Smedley, J., Int. J. Mod. Phys. A 22, 3759 (2007).Google Scholar
5. Bandis, C. and Pate, B.B., Surf. Sci. 350, 315 (1996).Google Scholar
6. Cui, J.B., Ristein, J., and Ley, L., Phys. Lett. 81, 429 (1998).Google Scholar
7. Diederich, L., Kuttel, O.M., Aebi, P., Maillard-Schaller, E., Fasel, R., and Schlapback, L., Diamond Relat. Mater. 7, 660 (1998).Google Scholar
8. Takeuchi, D., Ri, S.-G., Kato, H., Nebel, C.E., and Yamasaki, S., Diamond Relat. Mater. 15, 698 (2006).Google Scholar
9. Mearini, G.T., Krainsky, I.L., Dayton, J.A., Wang, Y., Zorman, C.A., Angus, J.C., Hoffman, R.W., and Anderson, D.F., Appl. Phys. Lett. 66, 242 (1995).Google Scholar
10. Hopman, H.J., Verhoeven, J., and Bachmann, P.K., Diamond Relat. Mater. 9, 1238 (2000).Google Scholar
11. Yater, J.E. and Shih, A., J. Appl. Phys. 87, 8103 (2000).Google Scholar
12. Trucchi, D.M., Scilletta, C., Cappelli, E., Merli, P.G., Zoffoli, S., Mattei, G., and Ascarelli, P., Diamond Relat. Mater. 15, 827 (2006).Google Scholar
13. Stacey, A., Prawer, S., Rubanov, S., Ahkvlediani, R., Michaelson, Sh., and Hoffman, A., Appl. Phys. Lett. 95, 262109 (2009).Google Scholar
14. Lapington, J.S., Thompson, D.P., May, P.W., Fox, N.A., Howorth, J., Milnes, J., and Taillandier, V., Nucl. Instr. and Meth. A 610, 253 (2009).Google Scholar
15. Bergonzo, P., Tromson, D., Descamps, C., Hamrita, H., Mer, C., Tranchant, N., and Nesladek, M., Diamond Relat. Mater. 16, 1038 (2007).Google Scholar
16. Almaviva, S., Marinelli, Marco, Milani, E., Prestopino, G., Tucciarone, A., Verona, C., Verona-Rinati, G., Angelone, M., Pillon, M., Dolbnya, I., Sawhney, K., and Tartoni, N., J. Appl. Phys. 107, 014511 (2010).Google Scholar
17. Takeuchi, D., Makino, T., Kato, H., Ogura, M., Tokuda, N., Oyama, K., Matsumoto, T., Hirabayashi, I., Okushi, H., and Yamasaki, S., Appl. Phys. Express 3, 041301 (2010).Google Scholar
18. Achard, J., Silva, F., Schneider, H., Sussmann, R.S., Tallaire, A., Gicquel, A., and Castex, M.C., Diamond Relat. Mater. 13, 876 (2004).Google Scholar
19. Jenkins, R.O. and Trodden, W.G., Electron and Ion Emission (Dover, New York, 1965), p. 54.Google Scholar
20. Klein, C.A., J. Appl. Phys. 39, 2029 (1968).Google Scholar
21. Jensen, K.L., Yater, J.E., Shaw, J.L., Myers, R.E., Pate, B.B., Butler, J.E., and Feygelson, T., J. Appl. Phys. 108, 044509 (2010).Google Scholar
22. Yater, J.E., Shih, A., and Abrams, R., Solid-State Electron. 42, 2225 (1998).Google Scholar
23. Yater, J.E., Shih, A., Butler, J.E., and Pehrsson, P.E., J. Appl. Phys. 93, 3082 (2003).Google Scholar
24. Yater, J.E., Shih, A., Butler, J.E., and Pehrsson, P.E., J. Appl. Phys. 96, 446 (2004).Google Scholar
25. Yater, J.E., Shih, A., Butler, J.E., and Pehrsson, P.E., J. Appl. Phys. 97, 093717 (2005).Google Scholar
26. Pehrsson, P.E., Celii, F.G., and Butler, J.E., Diamond Films and Coating Development Properties and Applications, edited by Davis, R. F. (Noyes, Park Ridge, N.J., 1993), p. 68.Google Scholar
27. Shih, A., Yater, J., Hor, C., and Abrams, R., IEEE Trans. Electron Devices 41, 2448 (1994).Google Scholar
28. Yater, J.E., Shih, A., and Abrams, R., Phys. Rev. B 56, R4410 (1997).Google Scholar
29. Thoms, B.D., Pehrsson, P.E., and Butler, J.E., J. Appl. Phys. 75, 1804 (1994).Google Scholar