Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T21:47:56.746Z Has data issue: false hasContentIssue false

Structural, Optical, and Electrical Properties of Amorphous Hydrogenated Carbon Nitride

Published online by Cambridge University Press:  26 February 2011

He-Xiang Han
Affiliation:
University of Missouri-St. Louis, Department of Physics, St. Louis, MO 63121 Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
Bernard J. Feldman
Affiliation:
University of Missouri-St. Louis, Department of Physics, St. Louis, MO 63121
Get access

Abstract

Amorphous hydrogenated carbon nitride thin films have been grown by plasma decomposition of a feedstock of CH4 and N2. In the films with higher nitrogen concentration, the infrared absorption spectra are dominated by NH2 modes and give strong evidence of a polymeric structure. The optical absorption and photoluminescence spectra show that nitrogen incorporation decreases the bandgap and increases the structural order of these thin films. The undoped material is an insulator with resistivities up to 1015Q cm, but when doped with iron, it becomes a p-type degenerate semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Duley, W. W. and Williams, D. A., M.N.R.A.S. 196, 269, (1981).Google Scholar
2. Cohen, M., Allamandola, L., Tielens, A., Bregman, J., Simpson, J. P., Witteborn, F. C., Wooden, D., and Rank, D., Ap. J. 302, 737 (1986).Google Scholar
3. Witt, A. N., private communication.Google Scholar
4. Khare, B. N., Sagan, C., Arakawa, E., Suits, F., Callcott, T. A., and Williams, M. W., Icarus 60, 127 (1984).Google Scholar
5. Khan, A. Azim, Woolam, J. A., and Chung, Y.. J. Appl. Phys. 55, 4299 (1984).Google Scholar
6. Enke, K., Dimigen, H., and Hubsch, H., Appl. Phys. Lett. 36, 291 (1980).Google Scholar
7. Jones, D. J. and Stewart, A. D., Phil. Mag. B 46, 423 (1782).Google Scholar
8. The film grown from only methane consisted of 44 at. % C, 48.5 at. % H, and 7.5 at. % 0. The film grown from a 9/1 ratio of N2 to CH4 contained 30 at. % C, 43 at. % H, 18 at. % N, and 9 at. % 0.Google Scholar
9. Bellamy, L. J., The Infrared Spectra of Complex Molecules, (Chapman and Hall, London, 1975).Google Scholar
10. McKenzie, D. R., McPhedran, R. C., Savvides, N., and Botten, L. C., Phil. Mag. B 48, 341 (1983).Google Scholar
11. Watanabe, H., Katoh, K., and Yasui, M., Jap. J. of Appl. Phys. 21, L341 (1982).Google Scholar
12. Voke, N. and Kanicki, J., in Plasma Processing, ed. by Coburn, J. W., Gottscho, R. A., and Hess, D. W., (MRS, Pittsburg, 1986), p. 175.Google Scholar
13. McKenzie, D. R., McPhedran, R. C., Savvides, W. and Cockayne, D. J. H., Thin Solid Films 108, 247 (1983).Google Scholar
14. Bodart, J. R. and Feldman, B. J., Phys. Rev. B 32, 1317 (1985).Google Scholar
15. Dunstan, D. J. and Boulitrop, F., Phys. Rev. B 30, 5945 (1984).Google Scholar
16. Kurata, H., Hirose, M., and Osaka, Y., Jap. J. of Appl. Phys. 20, L811 (1981).Google Scholar