Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T22:37:11.772Z Has data issue: false hasContentIssue false

Jets from neutron star X-ray binaries: towards a unified scheme

Published online by Cambridge University Press:  24 February 2011

Simone Migliari*
Affiliation:
European Space Agency/European Space Astronomy Center, Apartado/P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid, Spain, email: smigliari@sciops.esa.int
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Systematic multi-wavelength studies of neutron stars (NSs) have shown a jet and disk-jet coupling phenomenology which resembles, although with some important differences, that observed in black holes; ultra-relativistic transient ejection, steady compact jets, accretion-ejection cycles are indeed observed in NSs. I will review our observational knowledge of jet in NS X-ray binaries, focusing on the role of the parameters of the system which might be involved in the production of jets. First, I will discuss the role of the accretion rate, presenting a unified scheme for accretion-jet production throughout the different sub-classes of low-magnetic field NSs. Then, I will attempt to (make the first steps to) quantify the role of spin and magnetic field in powering the jet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Anderson, J. M., Li, Z.-Y., Krasnopolsky, R., & Blandford, R. D. 2003, ApJL, 590, L107CrossRefGoogle Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Bradshaw, C. F., Geldzahler, B. J., & Fomalont, E. B. 2003, ApJ, 592, 486CrossRefGoogle Scholar
Chakrabarty, D. et al. 2003, Nature, 424, 42CrossRefGoogle Scholar
Fender, R. et al. 2004, Nature, 427, 222CrossRefGoogle Scholar
Fender, R. et al. 2007, MNRAS, 380, L25CrossRefGoogle Scholar
Fender, R. P., Gallo, E., & Russell, D. 2010, MNRAS, 406, 1425Google Scholar
Fender, R. 2010, Lecture Notes in Physics, Berlin Springer Verlag, 794, 115CrossRefGoogle Scholar
Ferreira, J., Dougados, C., & Cabrit, S. 2006, A&A, 453, 785Google Scholar
Fomalont, E. B., Geldzahler, B. J., & Bradshaw, C. F. 2001, ApJ, 558, 283CrossRefGoogle Scholar
Hjellming, R. M., Han, X. H., Cordova, F. A., & Hasinger, G. 1990, A&A, 235, 147Google Scholar
Hjellming, R. M., et al. 1990, ApJ, 365, 681CrossRefGoogle Scholar
Homan, J., et al. 2010, ApJ, 719, 201CrossRefGoogle Scholar
Körding, E. G. et al. 2006, MNRAS, 369, 1451CrossRefGoogle Scholar
Migliari, S., & Fender, R. P. 2006, MNRAS, 366, 79CrossRefGoogle Scholar
Migliari, S. et al. 2003, MNRAS, 342, L67CrossRefGoogle Scholar
Migliari, S. et al. 2004, MNRAS, 351, 186CrossRefGoogle Scholar
Migliari, S., et al. 2007, ApJ, 671, 706CrossRefGoogle Scholar
Migliari, S., et al. 2010, ApJ, 710, 117CrossRefGoogle Scholar
Miller-Jones, J. C. A., et al. 2010, ApJL, 716, L109CrossRefGoogle Scholar
Penninx, W. et al. 1988, Nature, 336, 146CrossRefGoogle Scholar
Pestalozzi, M. et al. 2009, A&A, 506, L21Google Scholar
Psaltis, D., & Chakrabarty, D. 1999, ApJ, 521, 332CrossRefGoogle Scholar
Rutledge, R., Moore, C., Fox, D., & Lewin, W. 1998, ATel, 8, 1Google Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781CrossRefGoogle Scholar
Soleri, P., Tudose, V., Fender, R., van der Klis, M., & Jonker, P. G. 2009, MNRAS, 399, 453CrossRefGoogle Scholar
Tan, J. et al. 1992, ApJ, 385, 314CrossRefGoogle Scholar
Tudose, V., Migliari, S., Miller-Jones, J. C. A. et al. 2010, ATel, 2798, 1Google Scholar
Tudose, V., Fender, R. P., Linares, M., Maitra, D., & van der Klis, M. 2009, MNRAS, 400, 2111CrossRefGoogle Scholar
van der Klis, M. 2006, Compact stellar X-ray sources, 39CrossRefGoogle Scholar