Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T07:45:09.786Z Has data issue: false hasContentIssue false

Stellar black holes: Cosmic history and feedback at the dawn of the universe

Published online by Cambridge University Press:  24 February 2011

I. Felix Mirabel*
Affiliation:
CEA-Saclay, IRFU/DSM/Service d'Astrophysique. 91191 Gif sur Yvette. France IAFE-UBA-CONICET. cc 67, suc. 28. (C1428) Buenos Aires. Argentina email: felix.mirabel@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Significant historic cosmic evolution for the formation rate of stellar black holes is inferred from current theoretical models of the evolution of massive stars, the multiple observations of compact stellar remnants in the near and distant universe, and the cosmic chemical evolution. The mean mass of stellar black holes, the fraction of black holes/neutron stars, and the fraction of black hole high mass X-ray binaries (BH-HMXBs)/solitary black holes increase with redshift. The energetic feedback from large populations of BH-HMXBs form in the first generations of star burst galaxies has been overlooked in most cosmological models of the reionization epoch of the universe. The powerful radiation, jets, and winds from BH-HMXBs heat the intergalactic medium over large volumes of space and keep it ionized until AGN take over. It is concluded that stellar black holes constrained the properties of the faintest galaxies at high redshifts. I present here the theoretical and observational grounds for the historic cosmic evolution of stellar black holes. Detailed calculations on their cosmic impact are presented elsewhere (Mirabel, Dijkstra, Laurent, Loeb, & Pritchard 2011).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alvarez, M. A.Wise, J. H., & Abel, T. 2009, ApJ 701, L133CrossRefGoogle Scholar
Bouwens, R. J. et al. 2010, ApJ 709, L16CrossRefGoogle Scholar
Corbel, S. et al. 2002, Science 298, 196Google Scholar
Corbel, S. et al. 2005, ApJ, 632, 504Google Scholar
Crowther, P. A. et al. 2010, MNRAS, 403, L41CrossRefGoogle Scholar
Daigne, F. & Rossi, E. M., Mochkovitch, R. 2006, MNRAS 372, 1034CrossRefGoogle Scholar
Dell AValle, M. et al. 2006, Nature, 444, 1050CrossRefGoogle Scholar
Dhawan, V., et al. 2007, ApJ 668, 430CrossRefGoogle Scholar
Fabian, A. C. 2009, Proc. of IAU Symposium 267, Peterson, B.M., Somerville, R.S., & Storchi-Bergmann, T., eds.Google Scholar
Figer, D. F. 2005, ApJ 622, L49CrossRefGoogle Scholar
Fruchter, A. S. et al. 2006, Nature 441, 463Google Scholar
Fynbo, J. P. U. et al. 2006, Nature 444, 1047Google Scholar
Gal-Yam, A. et al. 2006, Nature 444, 1053CrossRefGoogle Scholar
Gallo, E. et al. 2005, Nature 436, 819CrossRefGoogle Scholar
Gehrels, N. et al. 2006, Nature 444, 1044CrossRefGoogle Scholar
Gladstone, J. C., Roberts, T. P., & Done, C. 2009, MNRAS 397, 1836CrossRefGoogle Scholar
Heger, A. et al. 2003, ApJ 591, 288CrossRefGoogle Scholar
Kistler, M. D. et al. 2008, ApJ 673, L119CrossRefGoogle Scholar
Krumholz, M. R. et al. 2009, Science 323, 754CrossRefGoogle Scholar
Le Floc'h, E. et al. 2003, A&A 400, 499Google Scholar
Madau, P. et al. 2004, ApJ 604, 484CrossRefGoogle Scholar
Mapelli, M., Colpi, M., & Zampieri, L. 2009, MNRAS 395, L71CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2005, A&A 429, 581Google Scholar
Miller-Jones, J. C. A. et al. 2009, ApJ 706, L230CrossRefGoogle Scholar
Milosavljevic, M. et al. 2009, ApJ 698, 766CrossRefGoogle Scholar
Mirabel, I. F. & Rodríguez, L. F. 1999, Ann. Rev. Astron. Astrophys. 37, 409CrossRefGoogle Scholar
Mirabel, I. F., Fuchs, Y., & Chaty, S. 2000, AIP Conf. Proc. 526, 814Google Scholar
Mirabel, I. F. et al. 2001, Nature 413, 139CrossRefGoogle Scholar
Mirabel, I. F. et al. 2002, A&A 395, 595Google Scholar
Mirabel, I. F. & Rodrigues, I. 2003, Science 300, 1119CrossRefGoogle Scholar
Mirabel, I. F., Dijkstra, M., Laurent, Ph., Loeb, A., & Pritchard, J. R. 2011, submitted to A&AGoogle Scholar
Muno, M. P. et al. 2006, ApJ 636, L41CrossRefGoogle Scholar
Neilsen, J., Lee, J. C., & Remillard, R. 2011, Proc. of IAU Symposium 275, Romero, G. E., Sunyaev, R. A. & Belloni, T., eds.Google Scholar
Page, L. et al. 2007, ApJ Supp. 170, 335Google Scholar
Pakull, M. W., Soria, R., & Motch, C. 2010, Nature 466, 209CrossRefGoogle Scholar
Power, C. et al. 2009, MNRAS 364, 1146Google Scholar
Qin, S. F. 2010, MNRAS 406, 558Google Scholar
Roberston, B. E. et al. 2010 Nature 468, 49Google Scholar
Romero, G. E. 2008, Rev. Mex. Astron. Astrof. 33, 82Google Scholar
Salvaterra, R. et al. 2009., Nature 461, 1258Google Scholar
Stacy, A., Greif, T. H., & Bromm, V. 2010, MNRAS 403, 45Google Scholar
Swartz, D. A., Tennat, A. F., Soria, R. 2009, ApJ 703, 159CrossRefGoogle Scholar
Turk, M. J., Abel, T., & O'Shea, B. 2009, Science 325, 601CrossRefGoogle Scholar
Valenti, S. et al. 2009, Nature 459, 674CrossRefGoogle Scholar
Vila, G. S., & Romero, G. E. 2010, MNRAS 403, 1457CrossRefGoogle Scholar
Zampieri, L. et al. 2003, MNRAS 338, 711CrossRefGoogle Scholar
Zamperi, L. & Roberts, T. P. 2009, MNRAS 400, 677CrossRefGoogle Scholar