Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T01:19:44.522Z Has data issue: false hasContentIssue false

Solar abundances and 3D model atmospheres

Published online by Cambridge University Press:  09 March 2010

Hans-Günter Ludwig
Affiliation:
CIFIST – Marie Curie Excellence Team GEPI – Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France
Elisabetta Caffau
Affiliation:
GEPI – Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France
Matthias Steffen
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
Piercarlo Bonifacio
Affiliation:
CIFIST – Marie Curie Excellence Team GEPI – Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, 34143 Trieste, Italy
Bernd Freytag
Affiliation:
CIFIST – Marie Curie Excellence Team GEPI – Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France CRAL – UMR 5574 CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
Roger Cayrel
Affiliation:
GEPI – Observatoire de Paris, CNRS, Université Paris Diderot, 92195 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allende Prieto, C., Lambert, D. L., Asplund, M. 2001, A&A, 556, 63Google Scholar
Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197CrossRefGoogle Scholar
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, ASP Conf. Ser, 336, 25Google Scholar
Asplund, M., Grevesse, N., Sauval, J., & Scott, P. 2009, ARAA, 47, 481CrossRefGoogle Scholar
Ayres, T. R., 2008, ApJ, 686, 731CrossRefGoogle Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B., & Plez, B. 2008, A&A, 488, 1031Google Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Livingston, W., Bonifacio, P., & Cayrel, R. 2009, A&A, submittedGoogle Scholar
Centeno, R. & Socas-Navarro, H. 2008, ApJ, 682, L61CrossRefGoogle Scholar
Freytag, B., Steffen, M., & Dorch, B. 2002, AN, 323, 213Google Scholar
Grevesse, N. & Sauval, A. J. 1998, Space Science Reviews, 85, 161CrossRefGoogle Scholar
Holweger, H. & Müller, E. A. 1974, Solar Physics, 39, 19CrossRefGoogle Scholar
Kurucz, R. L. 2005, MSAIS, 8, 14Google Scholar
Meléndez, J. 2004, ApJ, 615, 1042CrossRefGoogle Scholar
Neckel, H. & Labs, D. 1994, Solar Physics, 153, 91CrossRefGoogle Scholar
Reetz, J. 1999, PhD thesis, Ludwig-Maximilians University, MunichGoogle Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, A&A, 414, 1121Google Scholar