Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T02:23:03.263Z Has data issue: false hasContentIssue false

The Cosmic Chemical Evolution as seen by the Brightest Events in the Universe

Published online by Cambridge University Press:  09 March 2010

Sandra Savaglio*
Affiliation:
Max Planck Institute for Extraterrestrial Physics, 85748 Garching bei München, Germany email: savaglio@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-ray bursts (GRBs) are the brightest events in the universe. They have been used in the last five years to study the cosmic chemical evolution, from the local universe to the first stars. The sample size is still relatively small when compared to field galaxy surveys. However, GRBs show a universe that is surprising. At z > 2, the cold interstellar medium in galaxies is chemically evolved, with a mean metallicity of about 1/10 solar. At lower redshift (z < 1), metallicities of the ionized gas are relatively low, on average 1/6 solar. Not only is there no evidence of redshift evolution in the interval 0 < z < 6.3, but also the dispersion in the ~30 objects is large. This suggests that the metallicity of host galaxies is not the physical quantity triggering GRB events. From the investigation of other galaxy parameters, it emerges that active star-formation might be a stronger requirement to produce a GRB. Several recent striking results strongly support the idea that GRB studies open a new view on our understanding of galaxy formation and evolution, back to the very primordial universe at z ~ 8.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Berger, E., Penprase, B. E., Cenko, S. B., Kulkarni, S. R., Fox, D. B., Steidel, C. C., & Reddy, N. A. 2006, ApJ, 642, 979Google Scholar
Berger, E., et al. 2007, ApJ, 665, 102CrossRefGoogle Scholar
Bloom, J. S., et al. 2009, ApJ, 691, 723CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Franx, M., & Ford, H. 2008, ApJ, 686, 230CrossRefGoogle Scholar
Chary, R., Berger, E., & Cowie, L. 2007, ApJ, 671, 272Google Scholar
Chen, H.-W., et al. 2009, ApJ, 691, 152Google Scholar
de Ugarte Postigo, A., et al. 2009, A&A, submittedGoogle Scholar
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 644, 813Google Scholar
Fruchter, A. S., et al. 2006, Nature, 441, 463Google Scholar
Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., & Møller, P. 2008, ApJ, 683, 321CrossRefGoogle Scholar
Fynbo, J. P. U., et al. 2009, ApJS, in press, arXiv:0907.3449Google Scholar
Greiner, J., et al. 2009, ApJ, 693, 1610CrossRefGoogle Scholar
Gorosabel, J., et al. 2005, A&A, 444, 711Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142CrossRefGoogle Scholar
Juneau, S., et al. 2005, ApJ, 619, L135CrossRefGoogle Scholar
Kann, D. A., Klose, S., & Zeh, A. 2006, ApJ, 641, 993Google Scholar
Katz, J. I. & Canel, L. M. 1996, ApJ, 471, 915Google Scholar
Kelly, P. L., Kirshner, R. P., & Pahre, M. 2008, ApJ, 687, 1201CrossRefGoogle Scholar
Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183Google Scholar
Kistler, M. D., Yüksel, H., Beacom, J. F., Hopkins, A. M., & Wyithe, J. S. B. 2009, ApJ, 705, L104Google Scholar
Klebesadel, R. W., Strong, I. B., Olson, R. A. 1973, ApJ, 182, L85Google Scholar
Krühler, T., et al. 2008, ApJ, 685, 376CrossRefGoogle Scholar
Levesque, E. M., Berger, E., Kewley, L. J., & Bagley, M. M. 2009, AJ, submitted, arXiv:0907.4988Google Scholar
Maiolino, R., et al. 2008, A&A, 488, 463Google Scholar
Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., Steidel, C. C., Adelberger, K. L., Frail, D. A., Costa, E., & Frontera, F. 1997, Nature, 387, 878CrossRefGoogle Scholar
Michałowski, M. J., Hjorth, J., CastroCerón, J. M. Cerón, J. M., & Watson, D. 2008, ApJ, 672, 817Google Scholar
Ota, K., et al. 2008, ApJ, 677, 12CrossRefGoogle Scholar
Pozzetti, L., et al. 2009, A&A, submitted, arXiv:0907.5416Google Scholar
Price, P. A., et al. 2007, ApJ, 663, L57Google Scholar
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. 2007, ApJ, 666, 267CrossRefGoogle Scholar
Prochaska, J. X., et al. 2009, ApJL, 691, L27Google Scholar
Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M. 2006, ApJ, 653, 1004CrossRefGoogle Scholar
Salvaterra, R., et al. 2009, Nature, 461, 1258CrossRefGoogle Scholar
Savaglio, S. 2006, New Journal of Physics, 8, 195CrossRefGoogle Scholar
Savaglio, S., et al. 2005, ApJ, 635, 260CrossRefGoogle Scholar
Savaglio, S., Fall, S. M., & Fiore, F. 2003, ApJ, 585, 638Google Scholar
Savaglio, S., Glazebrook, K., & LeBorgne, D. 2009, ApJ, 691, 182Google Scholar
Somerville, R. S., Primack, J. R., & Faber, S. M. 2001, MNRAS, 320, 504Google Scholar
Tanvir, N. R., et al. 2009, Nature, 461, 1254CrossRefGoogle Scholar
Thöne, C. C., et al. 2008, ApJ, 676, 1151CrossRefGoogle Scholar
Totani, T., Kawai, N., Kosugi, G., Aoki, K., Yamada, T., Iye, M., Ohta, K., & Hattori, T. 2006, PASPJ, 58, 485Google Scholar
Tremonti, C. A., et al. 2004, ApJ, 613, 898Google Scholar
Woosley, S. E. 1993, ApJ, 405, 277Google Scholar