Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T21:16:43.623Z Has data issue: false hasContentIssue false

Turbulent Mixing in Stars: Theoretical Hurdles

Published online by Cambridge University Press:  09 March 2010

W. David Arnett
Affiliation:
Steward Observatory, University of Arizona, 933 Cherry Avenue, Tucson, Arizona 85721, USA email: darnett@as.arizona.edu, casey.meakin@gmail.com
Casey Meakin
Affiliation:
Steward Observatory, University of Arizona, 933 Cherry Avenue, Tucson, Arizona 85721, USA email: darnett@as.arizona.edu, casey.meakin@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A program is outlined, and first results described, in which fully three-dimensional, time dependent simulations of hydrodynamic turbulence are used as a basis for theoretical investigation of the physics of turbulence. The inadequacy of the treatment of turbulent convection as a diffusive process is indicated. A generalization to rotation and magnetohydrodynamics is indicated, as are connections to simulations of 3D stellar atmospheres.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arnett, D. 1996, Supernovae and Nucleosynthesis, Princeton University Press, Princeton NJGoogle Scholar
Arnett, D., Meakin, C., & Young, P. A. 2009a, ApJ, 690, 1715Google Scholar
Arnett, D., Meakin, C., & Young, P. A. 2009b, ApJ, submitted, arXiv0910.0821Google Scholar
Asplund, M. 2005, A&A Rev., 43, 481Google Scholar
Balbus, S. A. 2009, MNRAS, 395, 2056Google Scholar
Balbus, S. A. & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1Google Scholar
Blackman, E. 2010, Astron. Nachr., in pressGoogle Scholar
Blackman, E. & Pessah, M. 2009, ApJL, 704, L113Google Scholar
Boris, J., 2007, in Implicit Large Eddy Simulations, ed. Grinstein, F. F., Margolin, L. G., & Rider, W. J., Cambridge University Press, p. 9Google Scholar
Brun, A. S. 2009, ApJ, 702, 1078Google Scholar
Drake, R. P. 2006, High-Energy-Density Physics, Springer, Berlin, 2006, p. 6Google Scholar
Fontenla, J. M., Avrett, E., Thuillier, G., & Harder, J. 2006, ApJ, 639, 441Google Scholar
Kolmogorov, A. N. 1941, Dokl. Akad. Nauk SSSR, 30, 299Google Scholar
Kolmogorov, A. N. 1962, J. Fluid Mech., 13, 82Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959, Fluid Mechanics, Pergamon Press, LondonGoogle Scholar
Meakin, C. & Arnett, D. 2006, ApJL, 637, L53Google Scholar
Meakin, C. & Arnett, D. 2007a, ApJ, 665, 690.Google Scholar
Meakin, C. & Arnett, D. 2007b, ApJ, 667, 448Google Scholar
Meakin, C. & Arnett, D. 2010, in preparation.Google Scholar
Nordlund, A. & Stein, R. 2000, The Impact of Large-Scale Surveys on Pulsating Star Research, ASP Conf. Series, 203, 362Google Scholar
Remington, B. A., Drake, R. P., Takabe, H., & Arnett, D. 2000, Phys. Plasmas, 7, 1641Google Scholar
Remington, B. A., Drake, R. P., & Ryutov, D. D. 2006, Rev. Mod. Phys., 78, 755Google Scholar
Stein, R. F. & Nordlund, Å. 1998, ApJ, 499, 914Google Scholar
von Neumann, J. 1948, in Collected Works, Volume VI, 1963, Pergamon Press, Oxford, p. 467–9Google Scholar
Woodward, P. R. 2007, in Implicit Large Eddy Simulantions, ed. Grinstein, F. F., Margolin, L. G., & Rider, W. J., Cambridge University Press, p. 130Google Scholar