Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:09:03.716Z Has data issue: false hasContentIssue false

Thermospheric temperature and density variations

Published online by Cambridge University Press:  26 February 2010

Hitoshi Fujiwara
Affiliation:
Department of Geophysics, Tohoku University, Sendai, Japan email: fujiwara@pat.gp.tohoku.ac.jp
Yasunobu Miyoshi
Affiliation:
Department of Earth and Planetary Sciences, Kyushu University, FukuokaJapan email: miyoshi@geo.kyushu-u.ac.jp
Hidekatsu Jin
Affiliation:
National Institute of Communication Technology, Tokyo, Japan email: jin@nict.go.jp
Hiroyuki Shinagawa
Affiliation:
National Institute of Communication Technology, Tokyo, Japan email: sinagawa@nict.go.jp
Yuichi Otsuka
Affiliation:
Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan email: otsuka@ste.nagoya-u.ac.jp
Akinori Saito
Affiliation:
Department of Geophysics, Kyoto University, Kyoto, Japan email: saitoua@kugi.kyoto-u.ac.jp
Mamoru Ishii
Affiliation:
National Institute of Communication Technology, Tokyo, Japan email: mishii@nict.go.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermosphere is the transition region from the atmosphere to space. Both the solar ultraviolet radiation and the solar wind energy inputs have caused significant thermospheric variations from past to present. In order to understand thermospheric/ionospheric disturbances in association with changes in solar activity, observational and modelling efforts have been made by many researchers. Recent satellite observations, e.g., the satellite CHAMP, have revealed mass density variations in the upper thermosphere. The thermospheric temperature, wind, and composition variations have been also investigated with general/global circulation models (GCMs) which include forcings due to the solar wind energy inputs and the lower atmospheric effects. In particular, we have developed a GCM which covers all the atmospheric regions, troposphere, stratosphere, mesosphere, and thermosphere, to describe variations of the thermospheric temperature and density caused by both effects from the lower atmosphere and the magnetosphere. GCM simulations represent global and localized temperature and density structures, which vary from hour to hour, depending on forcings due to the lower atmosphere, solar and geomagnetic activities. This modelling attempt will enable us to describe the thermospheric weather influenced by solar activity in cooperation with ground-based and satellite observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Akmaev, R. A., Fuller-Rowell, T. J., Wu, F., Forbes, J. M., Zhang, X., Anghel, A. F., Iredell, M. D., Moorthi, S., & Juang, H.-M. 2008, Geophys. Res. Lett., 35, L03810, doi:10.1029/2007GL032584.CrossRefGoogle Scholar
Aruliah, A. L., Fuller-Rowell, T. J., and Rees, D. 1991, J. Atmos. Terr. Phys., 53, 467.CrossRefGoogle Scholar
Bilitza, D. & Reinisch, B. 2008, J. Adv. Space Res., 42, 599.CrossRefGoogle Scholar
Bruinsma, S., Forbes, J. M., Nerem, R. S., & Zhang, X. 2006, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284.CrossRefGoogle Scholar
Buonsanto, M. J. & Pohlman, L. M. 1998, J. Geophys. Res., 103, 23381.CrossRefGoogle Scholar
Forbes, J. M., Lu, G., Bruinsma, S., Nerem, R. S., & Zhang, X. 2005, J. Geophys. Res., 110, A12S27, doi:10.1029/2004JA010856.CrossRefGoogle Scholar
Forbes, J. M., Bruinsma, S. L., Miyoshi, Y., & Fujiwara, H. 2008, Geophys. Res. Lett., 35, L14802, doi:10.1029/2008GL034075.Google Scholar
Ford, E. A. K., Aruliah, A. L., Griffin, E. M., & McWhirter, I. 2007, Ann. Geophys., 25, 1269.CrossRefGoogle Scholar
Fujiwara, H. & Miyoshi, Y. 2006, Geophys. Res. Lett., 33, L20108, doi:10.1029/2006GL027103.CrossRefGoogle Scholar
Fujiwara, H. & Miyoshi, Y. 2009, Earth Planets Space, 61, 463.CrossRefGoogle Scholar
Fuller-Rowell, T. J. & Rees, D. 1980, J. Atmos. Sci., 37, 2545.2.0.CO;2>CrossRefGoogle Scholar
Fuller-Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H.-M., Hou, Y.-T., & Millward, G. 2008, Geophys. Res. Lett., 35, L09808, doi:10.1029/2007GL032911.CrossRefGoogle Scholar
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., Vial, F., & Vincent, R. A. 1996, J. Atmos. Terr. Phys. 58, 1421.CrossRefGoogle Scholar
Ishii, M., Oyama, S., Nozawa, S., Fujii, R., Sagawa, E., Watari, S., & Shinagawa, H. 1999, Earth Planets Space., 51, 833.CrossRefGoogle Scholar
Jin, H., Miyoshi, Y., Fujiwara, H., & Shinagawa, H. 2008, J. Geophys. Res., 113, A09307, doi:10.1029/2008JA013301.Google Scholar
Kanamitsu, M., Tada, K., Kudo, T., Sato, N., & Isa, S. 1983, J. Meteor. Soc. Japan, 61, 812.CrossRefGoogle Scholar
King-Hele, D. G. 1959, Nature, 183, 1224.CrossRefGoogle Scholar
King-Hele, D. G. 1987, Satellite Orbits in an Atmosphere: Theory and application, Springer, p. 304.Google Scholar
Liu, H., Luhr, H., Henize, V., & Kohler, W. 2005, J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741.Google Scholar
Miyahara, S., Yoshida, Y., and Miyoshi, Y. 1993, J. Atmos. Terr. Phys., 55, 1039.CrossRefGoogle Scholar
Miyoshi, Y. 1999, Earth Planets Space, 51, 763.CrossRefGoogle Scholar
Miyoshi, Y., & Fujiwara, H. 2003, Geophys. Res. Lett., 30, 1789, doi:10.1029/2003GL017695.CrossRefGoogle Scholar
Miyoshi, Y., & Fujiwara, H. 2006, J. Geophys. Res., 111, D14108, doi:10.1029/2005JD006993.Google Scholar
Miyoshi, Y., Fujiwara, H., Forbes, J. M., & Bruinsma, S. L. 2009, J. Geophys. Res., 114, A07303, doi:10.1029/2009JA014110.CrossRefGoogle Scholar
Nozawa, S., & Brekke, A. 1995, J. Geophys. Res., 100, 14717.CrossRefGoogle Scholar
Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. 2002, J. Geophys. Res., 107 (A12), 1468, doi:10.1029/2002JA009430.CrossRefGoogle Scholar
Prölss, G. W. 1982, J. Geophys. Res., 87, 5260.CrossRefGoogle Scholar
Richards, P. G., Fennelly, J. A., & Torr, D. G. 1994, J. Geophys. Res., 99, 8981.CrossRefGoogle Scholar
Roble, R. G.. 2000, AGU monograph, 123, 53.Google Scholar
Shiokawa, K., Kadota, T., Otsuka, Y., Ogawa, T., Nakamura, T., & Fukao, S. 2003, Earth Planets Space, 55, 271.CrossRefGoogle Scholar
Sutton, E. K., Forbes, J. M., Nerem, R. S., & Woods, T. N. 2006, Geophys. Res. Lett., 33, L22101, doi:10.1029/2006GL027737.CrossRefGoogle Scholar
Toth, G., De Zeeuw, D. L., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I. V., & Roussev, I. I. 2007, Space Weather, 5, S06003, doi:10.1029/2006SW000272.CrossRefGoogle Scholar
Wang, W., Wiltberger, M., Burns, A. G., Solomon, S. C., Killeen, T. L., Maruyama, N., & Lyon, J. G. 2004, J. Atmos. Solar-Terr. Phys., 66/15–16, 1425.CrossRefGoogle Scholar