Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T03:35:34.662Z Has data issue: false hasContentIssue false

The progeny of stellar dynamics and stellar evolution within an N-body model of NGC 188

Published online by Cambridge University Press:  18 January 2010

Aaron M. Geller
Affiliation:
University of Wisconsin–Madison, 475 N. Charter Street, Madison WI 53706, USA
Jarrod R. Hurley
Affiliation:
Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
Robert D. Mathieu
Affiliation:
University of Wisconsin–Madison, 475 N. Charter Street, Madison WI 53706, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a direct N-body simulation modeling the evolution of the old (7 Gyr) open cluster NGC 188. This is the first N-body open cluster simulation whose initial binary population is directly defined by observations of a specific open cluster: M35 (150 Myr). We compare the simulated color–magnitude diagram at 7 Gyr to that of NGC 188, and discuss the blue stragglers produced in the simulation. We compare the solar-type main-sequence binary period and eccentricity distributions of the simulation to detailed observations of similar binaries in NGC 188. These results demonstrate the importance of detailed observations in guiding N-body open cluster simulations. Finally, we discuss the implications of a few discrepancies between the NGC 188 model and observations and suggest a few methods for bringing N-body open cluster simulations into better agreement with observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aarseth, S. J. 2000, in: Gurzadyan, V. G. & Ruffini, R. (eds.), The Chaotic Universe, Proc. Second ICRA Network Workshop, Adv. Ser. Astrophys. Cosmol., vol. 10, p. 286Google Scholar
Aarseth, S. J. 2003, Gravitational N-Body Simulations, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Bonačić Marinović, A. A., Glebbeek, E., & Pols, O. R. 2008, A&A, 480, 797Google Scholar
Carraro, G. & Chiosi, C. 1994, A&A, 288, 751Google Scholar
Duquennoy, A. & Mayor, M. 1991, AA, 248, 485Google Scholar
Fregeau, J. M., Cheung, P., Portegies Zwart, S. F., & Rasio, F. A. 2004, MNRAS, 352, 1CrossRefGoogle Scholar
Geller, A. M., Mathieu, R. D., Braden, E. K., Meibom, S., Platais, I. & Dolan, C. 2009b, AJ, submittedGoogle Scholar
Geller, A. M., Mathieu, R. D., Harris, H. C., & McClure, R. D. 2008, AJ, 135, 2264CrossRefGoogle Scholar
Geller, A. M., Mathieu, R. D., Harris, H. C., & McClure, R. D. 2009a, AJ, 137, 3743CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., Aarseth, S. J., & Tout, C. A. 2005, MNRAS, 363, 293CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2000, MNRAS, 315, 543CrossRefGoogle Scholar
Kroupa, P. 1995, MNRAS, 277, 1507CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Latham, D. W. 2006, in: van der Hucht, K. A. (ed.) Highlights Astron. vol. 14, p. 444Google Scholar
Mathieu, R. D. 2000, ASP Conf. Ser., 198, 517Google Scholar
Mathieu, R. D. 2008, in: Vesperini, E., Giersz, M. & Sills, A. (eds.), Dynamical Evolution of Dense Stellar Systems, Proc. IAU Symp. No. 246, 79Google Scholar
Mathieu, R. D. & Geller, A. M. 2009, Nature, in pressGoogle Scholar
Meibom, S. & Mathieu, R. D. 2005, ApJ, 620, 970CrossRefGoogle Scholar
Mermilliod, J.-C., Rosvick, J. M., Duquennoy, A., & Mayor, M. 1992, A&A, 265, 513Google Scholar
Perets, H. B. & Fabrycky, D. C. 2009, ApJ, 697, 1048CrossRefGoogle Scholar
Sarajedini, A., von Hippel, T., Kozhurina–Platais, V., & Demarque, P. 1999, AJ, 118, 2894CrossRefGoogle Scholar
Sepinsky, J. F., Willems, B., Kalogera, V., & Rasio, F. A. 2007, ApJ, 667, 1170CrossRefGoogle Scholar