Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T02:00:56.375Z Has data issue: false hasContentIssue false

Spectroscopic binary mass determination using relativity

Published online by Cambridge University Press:  06 January 2010

Shay Zucker
Affiliation:
Dept. of Geophysics & Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel email: shayz@post.tau.ac.il
Tal Alexander
Affiliation:
Faculty of Physics, Weizmann Institute of Science PO Box 26, Rehovot 76100, Israel email: Tal.Alexander@weizmann.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision radial-velocity techniques, which enabled the detection of extra-solar planets, are now sensitive to the lowest-order relativistic effects in the data of spectroscopic binary stars (SBs). We show how these effects can be used to derive the absolute masses of the components of eclipsing single-lined SBs and double-lined SBs from Doppler measurements alone. High-precision stellar spectroscopy can thus substantially increase the number of measured stellar masses, thereby improving the mass-radius and mass-luminosity calibrations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baglin, A. 2003, Adv. Sp. Res., 31, 345CrossRefGoogle Scholar
Basri, G., Borucki, W. J., & Koch, D. 2005, New Astron. Revs, 49, 478CrossRefGoogle Scholar
Boden, A. F., Torres, G., & Hummel, C. A. 2005, ApJ, 627, 464CrossRefGoogle Scholar
Delfosse, X., Forveille, T., Beuzit, J.-L., Udry, S., Mayor, M., & Perrier, C. 1999, A&A, 344, 897Google Scholar
Henry, T. J., et al. 2005, BAAS, 37, 1356Google Scholar
Konacki, M. 2005, ApJ, 626, 431CrossRefGoogle Scholar
Kopeikin, S. M. & Ozernoy, L. M. 1999, ApJ, 523, 771CrossRefGoogle Scholar
Lovis, C., et al. 2005, A&A, 437, 1121Google Scholar
Marcy, G. W. & Butler, R. P. 1996, ApJ, 464, L147CrossRefGoogle Scholar
Mayor, M. & Queloz, D. 1995, Nature, 378, 355CrossRefGoogle Scholar
Pasquini, L., et al. 2006, in IAU Symp. 232, The Scientific Requirements for Extremely Large Telescopes, ed. Whitelock, P.A., Dennefeld, M. & Leibundgut, B. (Cambridge: Cambridge Univ. Press), p. 193Google Scholar
Queloz, D., et al. 2001, A&A, 379, 279Google Scholar
Ribas, I. 2006, Ap&SS, 304, 89Google Scholar
Tomkin, J. & Fekel, F. C. 2006, AJ, 131, 2652CrossRefGoogle Scholar
Udry, S., Eggenberger, A., Mayor, M., Mazeh, T., & Zucker, S. 2004, Rev. Mexicana AyA, 21, 207Google Scholar
Walker, G., et al. 2003, PASP, 115, 1023CrossRefGoogle Scholar
Zucker, S. & Alexander, T. 2007, ApJ, 645, L83CrossRefGoogle Scholar
Zucker, S. & Mazeh, T. 1994, ApJ, 420, 806CrossRefGoogle Scholar
Zucker, S., Mazeh, T., Santos, N. C., Udry, S., & Mayor, M. 2004, A&A, 426, 695Google Scholar