Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T04:20:32.368Z Has data issue: false hasContentIssue false

Cavitation in linear bubbles

Published online by Cambridge University Press:  27 July 2009

MICHAEL P. BRENNER*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent work has developed a beautiful model system for studying the energy focusing and heating power of collapsing bubbles. The bubble is effectively one-dimensional and the collapse and heating can be quantitatively measured. Thermal effects are shown to play an essential role in the time-dependent dynamics.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2009

References

REFERENCES

Ajaev, V. S., Homsy, G. M. & Morris, S. J. S. 2002 Dynamic response of geometrically constrained vapour bubbles. J. Colloid Interface Sci. 254, 346354.CrossRefGoogle Scholar
Baghdassarian, O., Chu, H.-C., Tabbert, B. & Williams, G. A. 2001 Spectrum of luminescence from laser-created bubbles in water. Phys. Rev. Lett. 86 (21), 49344937.CrossRefGoogle ScholarPubMed
Baghdassarian, O., Tabbert, B. & Williams, G. A. 1999 Luminescence characteristics of laser-induced bubbles in water. Phys. Rev. Lett. 83 (12), 24372440.CrossRefGoogle Scholar
Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J. & Weninger, K. R. 1997 Defining the unknowns of sonoluminescence. Phys. Rep. 281 (2), 65143.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.CrossRefGoogle Scholar
Brewer, R. G. & Rieckhoff, K. E. 1964 Stimulated brillouin scattering in liquids. Phys. Rev. Lett. 13 (11), 334336.CrossRefGoogle Scholar
Dergarabedian, P. 1960 Observations on bubble growths in various superheated liquids. J. Fluid Mech. 9, 3948.CrossRefGoogle Scholar
Flannigan, D. J. & Suslick, K. S. 2005 Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 5255.CrossRefGoogle ScholarPubMed
Gompf, B., Gunther, R., Nick, G., Pecha, R. & Eisenmenger, W. 1997 Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79 (7), 14051408.CrossRefGoogle Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.CrossRefGoogle Scholar
Moss, W. C., Clarke, D. B., White, J. W. & Young, D. A. 1996 Sonoluminescence and the prospects for table-top micro-thermonuclear fusion. Phys. Lett. A 211, 6974.CrossRefGoogle Scholar
Ohl, C. D., Lindau, O. & Lauterborn, W. 1998 Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett. 80 (2), 393396.CrossRefGoogle Scholar
Plesset, M. S. & Zwick, S. A. 1954 The growth of vapour bubbles in superheated liquids. J. Appl. Phys. 25 (4), 493500.CrossRefGoogle Scholar
Sun, C., Can, E., Dijkink, R., Lohse, D. & Prosperetti, A. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Yin, Z. & Prosperetti, A. 2005 a ‘Blinking bubble’ micropump with microfabricated heaters. J. Micromech. Microengng 15, 16831691.CrossRefGoogle Scholar
Yin, Z. & Prosperetti, A. 2005 b A microfluidic ‘blinking bubble’ pump. J. Micromech. Microengng 15, 19.CrossRefGoogle Scholar
Yuan, H., Oguz, H. N. & Prosperetti, A. 1999 Growth and collapse of a vapour bubble in a small tube. Intl J. Heat Mass Transfer 42, 36433657.CrossRefGoogle Scholar
Zwaan, E., Le-Gac, S., Tsuji, K. & Ohl, C. D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.CrossRefGoogle ScholarPubMed