Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T05:44:25.829Z Has data issue: false hasContentIssue false

The Sun in time: age, rotation, and magnetic activity of the Sun and solar-type stars and effects on hosted planets

Published online by Cambridge University Press:  01 October 2008

Edward F. Guinan
Affiliation:
Department of Astronomy & Astrophysics, Villanova University, Villanova, PA 19085, USA email: edward.guinan@villanova.edu
Scott G. Engle
Affiliation:
Department of Astronomy & Astrophysics, Villanova University, Villanova, PA 19085, USA email: edward.guinan@villanova.edu Centre for Astronomy, James Cook University, Townsville, QLD 4811, Australia email: scott.engle@villanova.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multi-wavelength studies of solar analogs (G0–5 V stars) with ages from ~50 Myr to 9 Gyr have been carried out as part of the “Sun in Time” program for nearly 20 yrs. From these studies it is inferred that the young (ZAMS) Sun was rotating more than 10× faster than today. As a consequence, young solar-type stars and the early Sun have vigorous magnetohydrodynamic (MHD) dynamos and correspondingly strong coronal X-ray and transition region/chromospheric FUV–UV emissions (up to several hundred times stronger than the present Sun). Also, rotational modulated, low amplitude light variations of young solar analogs indicate the presence of large starspot regions covering ~5–30% of their surfaces. To ensure continuity and homogeneity for this program, we use a restricted sample of G0–5 V stars with masses, radii, Teff, and internal structure (i.e. outer convective zones) closely matching those of the Sun. From these analogs we have determined reliable rotation-age-activity relations and X-ray–UV (XUV) spectral irradiances for the Sun (or any solar-type star) over time. These XUV irradiance measures serve as input data for investigating the photo-ionization and photo-chemical effects of the young, active Sun on the paleo-planetary atmospheres and environments of solar system planets. These measures are also important to study the effects of these high energy emissions on the numerous exoplanets hosted by solar-type stars of different ages. Recently we have extended the study to include lower mass, main-sequence (dwarf) dK and dM stars to determine relationships among their rotation spin-down rates and coronal and chromospheric emissions as a function of mass and age. From rotation-age-activity relations we can determine reliable ages for main-sequence G, K, M field stars and, subsequently, their hosted planets. Also inferred are the present and the past XUV irradiance and plasma flux exposures that these planets have endured and the suitability of the hosted planets to develop and sustain life.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Baliunas, S. L. et al. , 1995, ApJ, 438, 269CrossRefGoogle Scholar
Barnes, S. A. 2007, ApJ, 669, 1167CrossRefGoogle Scholar
Basu, S., Pinsonneault, M. H., & Bahcall, J. N. 2002, ApJ, 529, 1084CrossRefGoogle Scholar
Brandenburg, A. 2009, arXiv:0901.3789Google Scholar
Carton, J. M., Dewarf, L. E., & Guinan, E. F. 2007, Bulletin of the American Astronomical Society, 38, 928Google Scholar
Datin, K., Dewarf, L. E., Guinan, E. F., & Carton, J. M. 2009, American Astronomical Society Meeting Abstracts, 213, #406.09Google Scholar
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667CrossRefGoogle Scholar
Dikpati, M., Gilman, P. A., & MacGregor, K. B. 2005, ApJ, 631, 647CrossRefGoogle Scholar
Dorren, J. D. & Guinan, E. F. 1994, ApJ, 428, 805CrossRefGoogle Scholar
Engle, S. G., Guinan, E. F., & Mizusawa, T. 2009, to appear in the proceedings of “Future Directions in Ultraviolet Spectroscopy”Google Scholar
Feltzing, S. & Holmberg, J. 2000, A&A, 357, 153Google Scholar
Giampapa, M. S., Hall, J. C., Radick, R. R., & Baliunas, S. L. 2006, ApJ, 651, 444CrossRefGoogle Scholar
Grießmeier, J.-M. et al. , 2004, A&A, 425, 753Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L. 1997, ApJ, 483, 947Google Scholar
Guinan, E. F. & Engle, S. G. 2009, arXiv:0901.1860Google Scholar
Guinan, E. F. & Engle, S. G. 2007, arXiv:0711.1530Google Scholar
Guinan, E. F., Ribas, I., & Harper, G. M. 2003, ApJ, 594, 561CrossRefGoogle Scholar
Hall, J. C., Lockwood, G. W., & Skiff, B. A. 2007, AJ, 133, 862CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Kulikov, Y. N. et al. , 2006, P&SS, 54, 1425Google Scholar
Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., Khodachenko, M. L., Griessmeier, J.-M., Terada, N., & Ribas, I. 2006, European Planetary Science Congress 2006, 392Google Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., & Weiss, W. W. 2003, ApJL, 598, L121CrossRefGoogle Scholar
Lammer, H., Terada, N., Kulikov, Y. N., Lichtenegger, H. I. M., Khodachenko, M. L., & Penz, T. 2008, 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 384, 303Google Scholar
Lockwood, G. W., Skiff, B. A., Henry, G. W., Henry, S., Radick, R. R., Baliunas, S. L., Donahue, R. A., & Soon, W. 2007, ApJS, 171, 260CrossRefGoogle Scholar
Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Messina, S., Cutispoto, G., Guinan, E. F., Lanza, A. F., & Rodonò, M. 2006, A&A, 447, 293Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Soderblom, D. R. 1983, ApJS, 53, 1CrossRefGoogle Scholar
Soderblom, D. R. 1982, ApJ, 263, 239CrossRefGoogle Scholar
Soderblom, D. R., Fedele, S. B., Jones, B. F., Stauffer, J. R., & Prosser, C. F. 1993, AJ, 106, 1080CrossRefGoogle Scholar
Soderblom, D. R. & Mayor, M. 1993, AJ, 105, 226CrossRefGoogle Scholar
Tarter, J. C. et al. , 2007, Astrobiology, 7, 30CrossRefGoogle Scholar
Tehrany, M. G., Lammer, H., Hanslmeier, A., Ribas, I., Guinan, E. F., & Kolb, C. 2002, EGS XXVII General Assembly, Nice, 21-26 April 2002, abstract #1903Google Scholar
VandenBerg, D. A., Bergbusch, P. A., & Dowler, P. D. 2006, ApJS, 162, 375CrossRefGoogle Scholar
Walker, G. A. H. et al. , 2007, ApJ, 659, 1611CrossRefGoogle Scholar
Weiss, N. O. & Tobias, S. M. 2000, Space Science Reviews, 94, 99CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJL, 628, L143CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., & Linsky, J. L. 2002, ApJ, 574, 412CrossRefGoogle Scholar
Zurbuchen, T. H. et al. , 2008, Science, 321, 90CrossRefGoogle Scholar