Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T01:34:55.726Z Has data issue: false hasContentIssue false

Zeeman splitting in the diffuse interstellar medium–The Milky Way and beyond

Published online by Cambridge University Press:  01 November 2008

Carl Heiles
Affiliation:
Astronomy Department, UC Berkeley email: heiles@astro.berkeley.edu
Timothy Robishaw
Affiliation:
School of Physics, The University of Sydney email: robishaw@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We begin with a brief review of Zeeman-splitting fundamentals and the importance of circular polarization, i.e. Stokes V. We then turn to modern results in several areas, emphasizing the diffuse interstellar medium in the Galaxy. The median field in the Cold Neutral Medium is determined from HI absorption lines and is about 6 μG; the magnetic and turbulent pressures are comparable. Using HI emission lines the field has been mapped in several areas: the field reverses across the Orion Molecular Cloud; the 3-d field structure has been determined in the ρ Oph region; and in regions having shock-like morphology the field is generally stronger, strong enough to limit further compression. We briefly present new field measurements for: photo-dissociation regions at the edges of HII regions, determined from carbon recombination lines; Ultra Luminous Infrared Galaxies, from OH megamasers; and the 3C 286 damped Lyman-α absorption system, determined from the 21-cm line in absorption. We show the sidelobe response of the Green Bank Telescope, which is surprisingly severe and makes the telescope less than optimum for Zeeman-splitting measurements of HI emission lines. Finally, we compare two techniques for determining field strengths, i.e. Zeeman splitting and the Chandrasekhar-Fermi method, and show why the latter usually gives higher field strengths – and sometimes unrealistically high fields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Goodman, A. A. & Heiles, C. 1994, ApJ 424, 208CrossRefGoogle Scholar
Heiles, C. 1988, ApJ 324, 321CrossRefGoogle Scholar
Heiles, C. 1989, ApJ 336, 808CrossRefGoogle Scholar
Heiles, C. 1996, ApJ 466, 224CrossRefGoogle Scholar
Heiles, C. 1997, ApJS 111, 245CrossRefGoogle Scholar
Heiles, C. 1998, Astrophysics Letters and Communications, 37, 85. The title of this paper, “Zeeman Splitting Opportunities and Techniques at Arecibo”, gives no hint that it discusses Veerschuur's Indictment. Moreover, this article is difficult to find on the internet. Copies are available at the authors' websites, currently http://astro.berkeley.edu/~heiles and http://www.physics.usyd.edu.au/~robishaw)Google Scholar
Heiles, C. 1999, Arecibo Tech Memo 99-02 (http://www.naic.edu/science/techmemos_set.htm)Google Scholar
Heiles, C. 2002, in Single-Dish Radio Astronomy: Techniques and Applications, ASP Conf. Proceedings, Vol. 278. Eds Stanimirovic, S., Altschuler, D., Goldsmith, P., and Salter, C., 131Google Scholar
Heiles, C. & Crutcher, R. 2005, LNP Vol. 664: Cosmic Magnetic Fields 664, 137Google Scholar
Heiles, C., Perillat, P., Nolan, M., Lorimer, D., Bhat, R., Ghosh, T., Lewis, M., O'Neil, K., Salter, C., & Stanimirovic, S. 2001, PASP 113, 1274CrossRefGoogle Scholar
Heiles, C. & Troland, T. H. 2005, ApJ 624, 773CrossRefGoogle Scholar
Lane, W. & Heiles, C. 2008, in preparationGoogle Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., Green, A. J., & Haverkorn, M. 2006, ApJ 652, 1339CrossRefGoogle Scholar
Myers, P. C., Goodman, A. A., Güsten, R., & Heiles, C. 1995, ApJ 442, 177CrossRefGoogle Scholar
Robishaw, T. & Heiles, C. 2009, PASP, in pressGoogle Scholar
Robishaw, T., Quataert, E., & Heiles, C. 2008, ApJ 680, 981CrossRefGoogle Scholar
Troland, T. H. & Heiles, C. 1982, ApJ 252, 179CrossRefGoogle Scholar
Turnshek, D. A., Rao, S., Nestor, D., Lane, W., Monier, E., Bergeron, J., & Smette, A. 2001, ApJ 553, 288CrossRefGoogle Scholar
Verschuur, G. L. 1969, ApJ 156, 861CrossRefGoogle Scholar
Verschuur, G. L. 1989 ApJ 339, 163CrossRefGoogle Scholar
Verschuur, G. L. 1995a, ApJ 451, 624CrossRefGoogle Scholar
Verschuur, G. L. 1995b, ApJ 451, 645CrossRefGoogle Scholar
Wiebe, D. S. & Watson, W. D. 2004, ApJ 615, 300CrossRefGoogle Scholar
Wolfe, A., Broderick, J., Condon, J., & Johnston, K. 1976, ApJ 208, L47CrossRefGoogle Scholar
Wolfe, A., Jorgenson, R., Robishaw, T., Heiles, C., & Prochaska, J. 2008, Nature 455, 638CrossRefGoogle Scholar
Wolleben, M. & Reich, W. 2004, A&A 427, 537Google Scholar