Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T07:25:15.259Z Has data issue: false hasContentIssue false

The optically bright post-AGB population of the LMC

Published online by Cambridge University Press:  01 July 2008

Els van Aarle
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D BUS 2401, 3001 Leuven, Belgium email: els.vanaarle@ster.kuleuven.be, hans.vanwinckel@ster.kuleuven.be
Hans van Winckel
Affiliation:
Instituut voor Sterrenkunde, Celestijnenlaan 200D BUS 2401, 3001 Leuven, Belgium email: els.vanaarle@ster.kuleuven.be, hans.vanwinckel@ster.kuleuven.be
Tom Lloyd Evans
Affiliation:
School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland, UK email: thhle@st-andrews.ac.uk
Peter R. Wood
Affiliation:
Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia email: wood@mso.anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The detected variety in chemistry and circumstellar shell morphology of the limited sample of Galactic post-AGB stars is so large, that there is no consensus yet on how individual objects are linked by evolutionary channels. The evaluation is complicated by the fact that the distances and hence luminosities of these objects are poorly known. In this contribution we report on our project to overcome this problem by focusing on a significant sample of post-AGB stars with known distances: those in the LMC. Via cross-correlation of the infrared SAGE-SPITZER catalogue with optical catalogues we selected a sample of 322 LMC post-AGB candidates based on their position in the various colour-colour diagrams. We determined the fundamental properties of 82 of them, using low resolution optical spectra that we obtained at Siding Spring and SAAO. We selected a subsample to be studied at high spectral resolution in order to obtain accurate abundances of a wide range of species. This will allow us to connect the theoretical predictions with the obtained surface chemistry at a given luminosity and metallicity. By this, we want to constrain important structure parameters of the evolutionary models. Preliminary results of the selection process are presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Balick, B. & Frank, A. 2002, ARAA, 40, 439CrossRefGoogle Scholar
Blöcker, T. 1995, A&A, 299, 755Google Scholar
Deroo, P., Van Winckel, H., Min, M., et al. 2006, A&A, 438, 987Google Scholar
De Ruyter, S., Van Winckel, H., Maas, T., Lloyd Evans, T., Waters, L. B. F. M., & Dejonghe, H. 2006, A&A, 448, 641Google Scholar
García-Lario, P. 2006, in Barlow, M. J. & Méndez, R. H. (eds.), Planetary Nebulae in our Galaxy and Beyond IAU Symposium 234 (Cambridge: CUP), p. 63Google Scholar
Gielen, C., Van Winckel, H., Waters, L. B. F. M., Min, M., & Dominik, C. 2008, in Guandalini, R., Palmerini, S., & Busso, M. (eds.), The IXth Torino Workshop on Evolution and Nucleosynthesis in AGB Stars and the IInd Perugia Workshop on Nuclear Astrophysics, AIP Conf.Proc. 1001 (New York: AIP), p. 357Google Scholar
Hrivnak, B. J. 2003, in Kwok, S., Dopita, M., & Sutherland, R. (eds.), Planetary Nebulae: Their Evolution nad Role in the Universe, IAU Symposium 209 (ASP), p. 113Google Scholar
Massey, P., 2002, VizieR Online Data Catalog, 2236, 0Google Scholar
Meixner, M., Gordon, K. D., Indebetouw, , et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Sahai, R., Morris, M., Sánchez Contreras, C., & Claussen, M. 2007, AJ, 134, 2200CrossRefGoogle Scholar
Szczerba, R., Siódmiak, N., Stasińska, G., & Borkowski, J. 2007, A&A, 469, 799Google Scholar
Guide Star Catalog, Version 2.3.2 2006, VizieR Online Data CatalogGoogle Scholar
Van Winckel, H. 2003, ARAA, 41, 391CrossRefGoogle Scholar
Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E.K. 2004 AJ, 128, 1606CrossRefGoogle Scholar