Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T18:21:58.089Z Has data issue: false hasContentIssue false

The disruption of the Magellanic Stream

Published online by Cambridge University Press:  01 July 2008

J. Bland-Hawthorn*
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia email: jbh@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present evidence that the accretion of warm gas onto the Galaxy today is at least as important as cold gas accretion. For more than a decade, the source of the bright Hα emission (up to 750 mR†) along the Magellanic Stream has remained a mystery. We present a hydrodynamical model that explains the known properties of the Hα emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker Hα (100–200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In order to light up much of the Stream as observed, it must have a small angle of attack (≈ 20°) to the halo, and this may already find support in new H i observations. Another prediction is that the Balmer ratio (Hα/Hβ) will be substantially enhanced due to the slow shock; this will soon be tested by upcoming WHAM observations in Chile. We find that the clouds are evolving on timescales of 100–200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate (≳ 0.1 M yr−1). The ablated material falls onto the Galaxy as a warm drizzle; diffuse ionized gas at 104 K is an important constituent of galactic accretion. The observed Hα emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. When the ionized component of the infalling gas is accounted for, the rate of gas accretion is ≳ 0.4 M yr−1, roughly twice the rate deduced from H i observations alone.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Besla, G., Kallivayalil, N., Hernquist, L., et al. 2007, ApJ, 668, 949Google Scholar
Binney, J., Dehnen, W., & Bertelli, G. 2000, MNRAS, 318, 658Google Scholar
Bland-Hawthorn, J., Veilleux, S., Cecil, G. N., Putman, M. E., Gibson, B. K., & Maloney, P. R. 1998, MNRAS, 299, 611Google Scholar
Bland-Hawthorn, J. & Maloney, P. R. 1999, ApJ, 510, L33Google Scholar
Bland-Hawthorn, J. & Maloney, P. R. 2002, in Mulchaey, J. S. & Stocke, J. (eds.), Extragalactic Gas at Low Redshift, ASP-CS, 254, 267Google Scholar
Bland-Hawthorn, J., Sutherland, R., Agertz, O., & Moore, B. 2007, ApJ, 670, L109Google Scholar
Bregman, J. N. 2007, ARAA, 45, 221Google Scholar
Brüns, C., Kerp, J., Staveley-Smith, L., et al. 2005, A&A, 432, 45Google Scholar
Chevalier, R. A. & Raymond, J. C. 1978, ApJ, 225, L27Google Scholar
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108Google Scholar
Ferrara, A. & Field, G. B. 1994, ApJ, 423, 665Google Scholar
Flynn, C., Holmberg, J., Portinari, L., Fuchs, B., & Jahreiß, H. 2006, MNRAS, 372, 1149Google Scholar
Gibson, B. K., Giroux, M. L., Penton, S. V., Putman, M. E., Stocke, J. T., & Shull, J. M. 2000, AJ, 120, 1830Google Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006, ApJ, 652, 1213Google Scholar
Lockman, F. J., Benjamin, R. A., Heroux, A. J., & Langston, G. I. 2008, ApJ, 679, L21Google Scholar
Madsen, G. J., Haffner, L. M., & Reynolds, R. J. 2002, in Taylor, A. R., Landecker, T. L., & Willis, A. G. (eds.), Seeing Through the Dust. The Detection of H i and the Exploration of the ISM in Galaxies, ASP-CS, 276, 96Google Scholar
Maloney, P. R. & Bland-Hawthorn, J. 1999, ApJ, 522, L81Google Scholar
Maloney, P. 1993, ApJ, 414, 41Google Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509Google Scholar
Miyamoto, M. & Nagai, R. 1975, PASJ, 27, 533Google Scholar
Moore, B. & Davis, M. 1994, ApJ, 270, 209Google Scholar
Peek, J. E. G., Putman, M. E., & Sommer-Larsen, J. 2008, ApJ, 674, 227Google Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024Google Scholar
Putman, M. E., Bland-Hawthorn, J., Veilleux, S., Gibson, B. K., Freeman, K. C., & Maloney, P. R. 2003, ApJ, 597, 948Google Scholar
Quilis, V. & Moore, B. 2001, ApJ, 555, L95Google Scholar
Rosen, A. & Smith, M. D. 2004, MNRAS, 347, 1097Google Scholar
Sembach, K. R., Howk, J. C., Savage, B. D., Shull, J. M., & Oegerle, W. R. 2001, ApJ, 561, 573Google Scholar
Sembach, K. R., Wakker, B. P., Savage, B. D., et al. 2003, ApJS, 146, 165Google Scholar
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83Google Scholar
Smith, M. C., Ruchti, G. R., Helmi, A., et al. 2007, MNRAS, 379, 755Google Scholar
Wakker, B. P., York, D. G., Howk, J. C., et al. 2007, ApJ, 207, 670, L113Google Scholar
Weiner, B. J., Vogel, S. N., & Williams, T. B. 2002, in Mulchaey, J. S. & Stocke, J. (eds.), Extragalactic Gas at Low Redshift, ASP-CS, 254, 256Google Scholar
Westmeier, T. & Koribalski, B. S. 2008, MNRAS, 388, L29Google Scholar
Wilkinson, M. I. & Evans, N. W. 1999, MNRAS, 310, 645Google Scholar
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166Google Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 1995, ApJ, 453, 673Google Scholar