Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T19:38:54.121Z Has data issue: false hasContentIssue false

New analysis of the proper motions of the Magellanic Clouds using HST/WFPC2

Published online by Cambridge University Press:  01 July 2008

Nitya Kallivayalil
Affiliation:
Pappalardo Fellow, MIT Kavli Inst. for Astrophysics & Space Research, 70 Vassar Street, Cambridge, MA, 02139, USA; email: nitya@mit.edu
Roeland P. van der Marel
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Jay Anderson
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Gurtina Besla
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Charles Alcock
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In HST Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system. The implied three-dimensional velocities were larger than previously believed and close to the escape velocity in a standard 1012 M Milky Way dark halo, implying that the Clouds may be on their first passage. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch of data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. We present the results of an ongoing analysis of these WFPC2 data which indicate good consistency with the two-epoch results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949 (B07)Google Scholar
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108Google Scholar
Gardiner, L.T. & Noguchi, M. 1996, MNRAS, 278, 191 (GN96)Google Scholar
Geha, M., Alcock, C., Allsman, R. A., et al. 2003, AJ, 125, 1CrossRefGoogle Scholar
Heller, P. & Rohlfs, K. 1994, A&A, 291, 743Google Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006a, ApJ, 638, 772 (K1)CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006b, ApJ, 652, 1213 (K2)Google Scholar
Lin, D. N. C., & Lynden-Bell, D. 1982, MNRAS, 198, 707Google Scholar
Lin, D. N. C., Jones, B. F., & Klemola, A. R. 1995, ApJ, 439, 652Google Scholar
Mastropietro, C., Moore, B., Mayer, L., Debattista, V. P., Piffaretti, R., & Stadel, J. 2005, MNRAS, 364, 607Google Scholar
Moore, B. & Davis, M. 1994, MNRAS, 270, 209Google Scholar
Murai, T. & Fujimoto, M. 1980, PASJ, 32, 581Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563Google Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024 (P08)Google Scholar
Shattow, G. & Loeb, A. 2009, MNRAS 392, L21CrossRefGoogle Scholar
van der Marel, R. P., Alves, D. R., Hardy, E., & Suntzeff, N. B. 2002, AJ, 124, 2639Google Scholar
Wu, X., Famaey, B., Gentile, G., Perets, H., & Zhao, H. 2008, MNRAS, 386, 2199Google Scholar
Yoshizawa, A. M. & Noguchi, M. 2003, MNRAS, 339, 1135CrossRefGoogle Scholar