Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T13:38:24.307Z Has data issue: false hasContentIssue false

Kinematical structure of the Magellanic System

Published online by Cambridge University Press:  01 July 2008

Roeland P. van der Marel
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Nitya Kallivayalil
Affiliation:
MIT, Kavli Inst. for Astrophysics & Space Research, 70 Vassar Street, Cambridge, MA 02139, USA
Gurtina Besla
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review our understanding of the kinematics of the LMC and the SMC, and their orbit around the Milky Way. The line-of-sight velocity fields of both the LMC and SMC have been mapped with high accuracy using thousands of discrete traces, as well as H i gas. The LMC is a rotating disk for which the viewing angles have been well established using various methods. The disk is elliptical in its disk plane. The disk thickness varies depending on the tracer population, with V/σ ranging from ~2–10 from the oldest to the youngest population. For the SMC, the old stellar population resides in a spheroidal distribution with considerable line-of-sight depth and low V/σ. Young stars and H i gas reside in a more irregular rotating disk. Mass estimates based on the kinematics indicate that each Cloud is embedded in a dark halo. Proper motion measurements with HST show that both galaxies move significantly more rapidly around the Milky Way than previously believed. This indicates that for a canonical 1012 M Milky Way the Clouds are only passing by us for the first time. Although a higher Milky Way mass yields a bound orbit, this orbit is still very different from what has been previously assumed in models of the Magellanic Stream. Hence, much of our understanding of the history of the Magellanic System and the formation of the Magellanic Stream may need to be revised. The accuracy of the proper motion data is insufficient to say whether or not the LMC and SMC are bound to each other, but bound orbits do exist within the proper motion error ellipse.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alves, D. R. 2004, ApJ, 601, L151CrossRefGoogle Scholar
Besla, G., Kallivayalil, N, Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949CrossRefGoogle Scholar
Bessell, M. S., Freeman, K. C., & Wood, P. R. 1986, ApJ, 310, 710CrossRefGoogle Scholar
Borissova, J., Minniti, D., Rejkuba, M., & Alves, D. 2006, A&A, 460, 459Google Scholar
Cioni, M.-R. L., Habing, H. J., & Israel, F. P. 2000, A&A, 358, L9Google Scholar
Cole, A. A., Tolstoy, E., Gallagher, J. S. III, & Smecker-Hane, T. A. 2005, AJ, 129, 1465CrossRefGoogle Scholar
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108CrossRefGoogle Scholar
Crowl, H. H., Sarajedini, A., Piatti, A. E., Geisler, D., Bica, E., Claria, J. J., & Santos, J. F. C., Jr. 2001, AJ, 122, 220CrossRefGoogle Scholar
Evans, C. J. & Howarth, I. D. 2008, MNRAS, 386, 826CrossRefGoogle Scholar
Feitzinger, J. V., Schmidt-Kaler, T., & Isserstedt, J. 1977, A&A, 57, 265Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Gardiner, L. T. & Noguchi, M. 1996, MNRAS, 278, 191CrossRefGoogle Scholar
Gardiner, L. T., Sawa, T., & Fujimoto, M. 1994, MNRAS, 266, 567CrossRefGoogle Scholar
Geha, M., Alcock, C., Allsman, R. A., et al. 2003, AJ, 125, 1CrossRefGoogle Scholar
Graff, D. S., Gould, A. P., Suntzeff, N. B., Schommer, R. A., & Hardy, E. 2000, ApJ, 540, 211CrossRefGoogle Scholar
Grocholski, A. J., Cole, A. A., Sarajedini, A., Geisler, D., & Smith, V. V. 2006, AJ, 132, 1630CrossRefGoogle Scholar
Harris, J. & Zaritsky, D. 2006, AJ, 131, 2514CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006a, ApJ, 638, 772 (K06a)CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006b, ApJ, 652, 1213 (K06b)CrossRefGoogle Scholar
Kallivayalil, N. 2007, PhD thesis, Harvard UniversityGoogle Scholar
Kazantzidis, S., Zentner, A. R., & Bullock, J. S. 2008, ApJ, in press [arXiv:0807.2863]Google Scholar
Kim, S., Staveley-Smith, L., Dopita, M. A., Freeman, K. C., Sault, R. J., Kesteven, M. J., & McConnell, D. 1998, ApJ, 503, 674CrossRefGoogle Scholar
Klypin, A., Zhao, H. S., & Somerville, R. S. 2002, ApJ, 573, 597CrossRefGoogle Scholar
Kunkel, W. E., Irwin, M. J., & Demers, S. 1997, A&AS, 122, 463Google Scholar
Maragoudaki, F., Kontizas, M., Morgan, D. H., Kontizas, E., Dapergolas, A., & Livanou, E. 2001, A&A, 379, 864Google Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509CrossRefGoogle Scholar
Meatheringham, S. J., Dopita, M. A., Ford, H. C., & Webster, B. L. 1988, ApJ, 327, 651CrossRefGoogle Scholar
Minniti, D., Borissova, J., Rejkuba, M., Alves, D. R., Cook, K. H., & Freeman, K. C. 2003, Science, 301, 1508CrossRefGoogle Scholar
Moore, B. & Davis, M. 1994, MNRAS, 270, 209CrossRefGoogle Scholar
Nidever, D. L., Majewski, S. R., & Burton, W. B. 2008, ApJ, 679, 432CrossRefGoogle Scholar
Nikolaev, S., Drake, A. J., Keller, S. C., Cook, K. H., Dalal, N., Griest, K., Welch, D. L., & Kanbur, S. M. 2004, ApJ, 601, 260CrossRefGoogle Scholar
Olsen, K. A. G. & Salyk, C. 2002, AJ, 124, 2045CrossRefGoogle Scholar
Olsen, K. A. G. & Massey, P. 2007, ApJ, 656, L61OCrossRefGoogle Scholar
Persson, S. E., Madore, B. F., Krzeminski, W., Freedman, W. L., Roth, M., & Murphy, D. C. 2004, AJ, 128, 2239CrossRefGoogle Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, ApJ, 135, 1024 (P08)CrossRefGoogle Scholar
Schommer, R. A., Suntzeff, N. B., Olszewski, E. W., & Harris, H. C. 1992, AJ, 103, 447CrossRefGoogle Scholar
Shattow, G. & Loeb, A. 2009, MNRAS, 392, L21CrossRefGoogle Scholar
Smith, M. C., Ruchti, G. R., Helmi, A., et al. 2007, MNRAS, 379, 755CrossRefGoogle Scholar
Stanimirović, S., Staveley-Smith, L., & Jones, P. 2004, ApJ, 604, 176CrossRefGoogle Scholar
Subramaniam, A. 2003, ApJ, 598, L19CrossRefGoogle Scholar
van den Bergh, S. 2006, AJ, 132, 1571CrossRefGoogle Scholar
van der Marel, R. P. & Cioni, M.-R. 2001, AJ, 122, 1807CrossRefGoogle Scholar
van der Marel, R. P. 2001, AJ, 122, 1827CrossRefGoogle Scholar
van der Marel, R. P., Alves, D. R., Hardy, E., & Suntzeff, N. B. 2002, AJ, 124, 2639 (vdM02)CrossRefGoogle Scholar
van der Marel, R. P. & Guhathakurta, P. 2008, ApJ, 678, 187CrossRefGoogle Scholar
Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A. 2002, ApJ, 568, 52CrossRefGoogle Scholar
Weinberg, M. D. 2000, ApJ, 532, 922CrossRefGoogle Scholar
Zaritsky, D., Harris, J., Grebel, E. K., & Thompson, I. B. 2000, ApJ, 534, L53CrossRefGoogle Scholar
Zaritsky, D., Harris, J., Thompson, I. B., Grebel, E. K., & Massey, P. 2002, AJ, 123, 855CrossRefGoogle Scholar
Zhao, H., Ibata, R. A., Lewis, G. F., & Irwin, M. J. 2003, MNRAS, 339, 701CrossRefGoogle Scholar