Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T04:07:44.227Z Has data issue: false hasContentIssue false

The star clusters of the Magellanic System

Published online by Cambridge University Press:  01 July 2008

Basílio X. Santiago*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do SulCaixa Postal 15051, Porto Alegre, RS, Brazil email: santiago@if.ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

More than 50 years have elapsed since the first studies of star clusters in the Magellanic Clouds. The wealth of data accumulated since then has not only revealed a large cluster system, but also a diversified one, filling loci in the age, mass and chemical abundance parameter space which are complementary to Galactic clusters. Catalogs and photometric samples currently available cover most of the cluster mass range. The expectations of relatively long cluster disruption timescales in the Clouds have been confirmed, allowing reliable assessments of the cluster initial mass function and of the cluster formation rate in the Clouds. Due to their proximity to the Galaxy, Magellanic clusters are also well resolved into stars. Analysis of colour—magnitude diagrams (CMDs) of clusters with different ages, masses and metallicities are useful tools to test dynamical effects such as mass loss due to stellar evolution, two-body relaxation, stellar evaporation, cluster interactions and tidal effects. The existence of massive and young Magellanic clusters has provided insight into the physics of cluster formation. The magnitudes and colours of different stellar types are confronted with stellar evolutionary tracks, thus constraining processes such as convective overshooting, stellar mass-loss, rotation and pre main-sequence evolution. Finally, the Magellanic cluster system may contribute with nearby and well studied counterparts of recently proposed types of extragalactic clusters, such as Faint Fuzzies and Diffuse Star Clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bastian, N. & Goodwin, S. 2006, MNRAS, 369, L9CrossRefGoogle Scholar
Bica, E., Geisler, D., & Dottori, H. 1998, AJ, 116, 723CrossRefGoogle Scholar
Bica, E., Schmitt, H., Dutra, C., & Oliveira, H. 1999, AJ, 117, 238CrossRefGoogle Scholar
Bica, E. & Dutra, C. 2000, AJ, 119, 1214CrossRefGoogle Scholar
Bica, E., Bonatto, C., Dutra, C., & Santos, J. 2008, MNRAS, 389, 678CrossRefGoogle Scholar
Boutloukos, S. & Lamers, H. 2003, MNRAS, 338, 717CrossRefGoogle Scholar
Brocato, E., Di Carlo, E., & Menna, G. 2001, A&A, 374, 523Google Scholar
Brodie, J. & Larsen, S. 2002, AJ, 124, 1410CrossRefGoogle Scholar
Burkert, A., Brodie, J., & Larsen, S. 2005, ApJ, 628, 231CrossRefGoogle Scholar
Carlson, L., Sabbi, E., Sirianni, M., et al. 2007, ApJ, 665, L109CrossRefGoogle Scholar
Chandar, R., Fall, S. M., & Whitmore, B. 2006, ApJ, 650, L111CrossRefGoogle Scholar
Chies-Santos, A., Santiago, B., & Pastoriza, M. 2007, A&A, 467, 1003Google Scholar
Côté, P., Blakeslee, J., Ferrarese, L., et al. 2004, ApJS, 153, 223CrossRefGoogle Scholar
de Grijs, R., Gilmore, G., Mackey, A., Wilkinson, M., Beaulieu, S., Johnson, R., & Santiago, B. 2002, MNRAS, 337, 597CrossRefGoogle Scholar
de Grijs, R. & Anders, P. 2006, MNRAS, 366, 295CrossRefGoogle Scholar
de Grijs, R. & Goodwin, S. 2008, MNRAS, 383, 1000CrossRefGoogle Scholar
Elson, R., Fall, M., & Freeman, K. 1987, ApJ, 323, 54CrossRefGoogle Scholar
Elson, R., Freeman, K., & Lauer, T. 1989, ApJ, 347, L69CrossRefGoogle Scholar
Freeman, K., Illingworth, G., & Oemler, A. 1983, ApJ, 272, 488CrossRefGoogle Scholar
Gieles, M., Lamers, H., & Portegies Zwart, S. 2007, ApJ, 668, 268CrossRefGoogle Scholar
Glatt, K., Gallagher, J., Grebel, E., et al. 2008, AJ, 135, 1106CrossRefGoogle Scholar
Grocholski, A., Cole, A., Sarajedini, A., Geisler, D., & Smith, V. 2006, AJ, 132, 1630CrossRefGoogle Scholar
Harris, W. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Hennekemper, E., Gouliermis, D., Henning, T., Brandner, W., & Dolphin, A. 2008, ApJ, 672, 914CrossRefGoogle Scholar
Hernandez, X., Valls-Gabaud, D., & Gilmore, G. 2000, MNRAS, 317, 831CrossRefGoogle Scholar
Hodge, P. & Sexton, J. 1966, AJ, 71, 363CrossRefGoogle Scholar
Hodge, P. 1986, PASP, 98, 1113CrossRefGoogle Scholar
Hodge, P. 1988, PASP, 100, 576CrossRefGoogle Scholar
Hunter, D., Elmegreen, B., Dupuy, T., & Mortonson, M. 2003, AJ, 126, 1836CrossRefGoogle Scholar
Hunter, I., Dufton, P., Smartt, S., et al. 2007, A&A, 466, 277Google Scholar
Javiel, S., Santiago, B., & Kerber, L. 2005 A&A, 431, 73Google Scholar
Kerber, L., Santiago, B., Castro, R., & Valls-Gabaud, D. 2002, A&A, 390, 121Google Scholar
Kerber, L. & Santiago, B. 2005, A&A, 435, 77Google Scholar
Kerber, L. & Santiago, B. 2006, A&A, 452, 155Google Scholar
Kerber, L., Santiago, B., & Brocato, E. 2007, A&A, 462, 139Google Scholar
Kron, G. 1956, PASP, 68, 125CrossRefGoogle Scholar
Kruijssen, J. & Lamers, H. 2008, in Funes, J. G. & Corsini, E. M. (eds.), Formation and Evolution of Galaxy Disks, ASP-CS, 396, p. 149Google Scholar
Kumar, B., Sagar, R., & Melnick, J. 2008, MNRAS, 386, 1380CrossRefGoogle Scholar
Kurth, O., Fritze-v, A., & Fricke, K. 1999, A&AS, 139, 19Google Scholar
Larsen, S. & Brodie, J. 2000, AJ, 120, 2938CrossRefGoogle Scholar
Larsen, S. 2001, AJ, 122, 1782CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J., et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Lindsay, E. 1958, MNRAS, 118, 172CrossRefGoogle Scholar
Lyngå, G. & Westerlund, B. 1963, MNRAS, 127, 31CrossRefGoogle Scholar
Mackey, A. & Gilmore, G. 2003a, MNRAS, 338, 85CrossRefGoogle Scholar
Mackey, A. & Gilmore, G. 2003b, MNRAS, 338, 120CrossRefGoogle Scholar
Mackey, A., Wilkinson, M., Davies, M., & Gilmore, G. 2008, MNRAS, 386, 65CrossRefGoogle Scholar
Marigo, P. & Girardi, L. 2007, A&A, 469, 239Google Scholar
Massey, P. 2002, ApJS, 141, 81CrossRefGoogle Scholar
Mucciarelli, A., Ferraro, F., Origlia, L., & Fusi Pecci, F. 2007a, AJ, 133, 2053CrossRefGoogle Scholar
Mucciarelli, A., Origlia, L., & Ferraro, F. 2007b, AJ, 134, 1813CrossRefGoogle Scholar
Mucciarelli, A., Carretta, E., Origlia, L., & Ferraro, F. 2008, AJ, 136, 375CrossRefGoogle Scholar
Noël, N., Aparício, A., Gallart, C., Hidalgo, S., Costa, E., Méndez, R. 2007, in Vazdekis, A., & Peletier, R.F. (eds.), Stellar Populations as Building Blocks of Galaxies, IAU Conf.Proc. 241 (Cambridge: CUP), p. 373Google Scholar
Peng, E., Coté, P., Jordán, A., et al. 2006, ApJ, 639, 838.CrossRefGoogle Scholar
Piatti, A., Bica, E., Geisler, D., & Clariá, J. 2003, MNRAS, 344, 965CrossRefGoogle Scholar
Piatti, A., Sarajedini, A., Geisler, D., Gallart, C., & Wischnjewsky, M. 2007, MNRAS, 382, 1203CrossRefGoogle Scholar
Rafelski, M. & Zaritsky, D. 2005, AJ, 129, 2701CrossRefGoogle Scholar
Santiago, B., Beaulieu, S., Johnson, R., & Gilmore, G. 2001, A&A, 369, 74Google Scholar
Schmalzi, M., Gouliermis, D., Dolphin, A., & Henning, T. 2008, ApJ, 681, 290CrossRefGoogle Scholar
Schommer, R., Olszewski, E., Suntzeff, N., & Harris, H. 1992, AJ, 103, 447CrossRefGoogle Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Shapley, H. & Lindsay, E. 1963, IrAJ, 6, 74Google Scholar
Trundle, C., Dufton, P., Hunter, I., Evans, C., Lennon, D., Smartt, S., & Ryans, R. 2007, A&A, 471, 625Google Scholar
Wilkinson, M., Hurley, J., Mackey, A., Gilmore, G., & Tout, C. 2003, MNRAS, 343, 1025CrossRefGoogle Scholar
Xin, Y., Deng, L., de Grijs, R., Mackey, A., & Han, Z. 2008, MNRAS, 384, 410CrossRefGoogle Scholar
Zaritsky, D., Harris, J., & Thompson, I. 1997, AJ, 114, 1002CrossRefGoogle Scholar