Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T11:37:47.766Z Has data issue: false hasContentIssue false

The August 24, 2002 coronal mass ejection: when a western limb event connects to earth

Published online by Cambridge University Press:  01 September 2008

Noé Lugaz
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI, 96822, USA email: nlugaz@ifa.hawaii.edu, iroussev@ifa.hawaii.edu
Ilia I. Roussev
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI, 96822, USA email: nlugaz@ifa.hawaii.edu, iroussev@ifa.hawaii.edu
Igor V. Sokolov
Affiliation:
Department of AOSS, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48198 email: igorosk@umich.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss how some coronal mass ejections (CMEs) originating from the western limb of the Sun are associated with space weather effects such as solar energetic particles (SEPs), shocks or geo-effective ejecta at Earth. We focus on the August 24, 2002 coronal mass ejection, a fast (~2000 km s−1) eruption originating from W81. Using a three-dimensional magneto-hydrodynamic simulation of this ejection with the Space Weather Modeling Framework (SWMF), we show how a realistic initiation mechanism enables us to study the deflection of the CME in the corona and the heliosphere. Reconnection of the erupting magnetic field with that of neighboring streamers and active regions modify the solar connectivity of the field lines connecting to Earth and can also partly explain the deflection of the eruption during the first tens of minutes. Comparing the results at 1 AU of our simulation with observations by the ACE spacecraft, we find that the simulated shock does not reach Earth, but has a maximum angular span of about 120°, and reaches 35° West of Earth in 58 hours. We find no significant deflection of the CME and its associated shock wave in the heliosphere, and we discuss the consequences for the shock angular span.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Altschuler, M. D., Levine, R. H., Stix, M., & Harvey, J. 1977, Solar Phys., 51, 345CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485CrossRefGoogle Scholar
Cremades, H., Bothmer, V., & Tripathi, D. 2006, Adv. Space Res., 38, 461CrossRefGoogle Scholar
DeLucas, A. et al. 2008, in this volumeGoogle Scholar
Eroshenko, E. et al. 2008, in this volumeGoogle Scholar
Galsgaard, K., Moreno-Insertis, F., Archontis, V., & Hood, A. 2005, ApJ Lett., 618, L153CrossRefGoogle Scholar
Ippolito, A., Pommois, P., Zimbardo, G., & Veltri, P. 2005, A & A, 438, 705CrossRefGoogle Scholar
Jackson, B. V. & Hick, P. P. 2002, Solar Phys., 211, 345CrossRefGoogle Scholar
Jacobs, C., van der Holst, B., & Poedts, S. 2007, A & A, 470, 359CrossRefGoogle Scholar
Manchester, W. B. IV, et al. 2005, ApJ, 622, 1225CrossRefGoogle Scholar
Pontin, D. I. & Galsgaard, K. 2007, JGR, 112, 3103CrossRefGoogle Scholar
Raymond, J. C., et al. 2003, ApJ, 597, 1106CrossRefGoogle Scholar
Roussev, I. I., et al. 2003, ApJ, 595, L57CrossRefGoogle Scholar
Roussev, I. I., Lugaz, N., & Sokolov, I. V. 2007, ApJ Letters, 668, L87CrossRefGoogle Scholar
Roussev, I. I., Lugaz, N., & Sokolov, I. V. 2008, AIP Conf.Ser., 1039, 286CrossRefGoogle Scholar
Tan, L. C., Reames, D. V., & Ng, C. K. 2008, ApJ, 678, 1471CrossRefGoogle Scholar
Tóth, G., et al. 2005, J. Geophys. Res., 110, 12226CrossRefGoogle Scholar
Tripathi, D. et al. 2004, Multi-Wavelength Investigations of Solar Activity, 223, 401Google Scholar
Tylka, A. J. et al. 2005, ApJ, 625, 474CrossRefGoogle Scholar
Tylka, A. J. et al. 2006, ApJS, 164, 536CrossRefGoogle Scholar
Wang, Y., Shen, C., Wang, S., & Ye, P. 2004, Sol. Phys., 222, 329CrossRefGoogle Scholar
Zhang, J., Poomvises, W., & Richardson, I. G. 2008, Geophys. Res. Lett., 35, 2109Google Scholar