Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-17T03:30:43.066Z Has data issue: false hasContentIssue false

The Molecular Gas Component of Galaxy Disks

Published online by Cambridge University Press:  01 June 2008

Leo Blitz*
Affiliation:
University of California, Berkeley Radio Astronomy Lab., 601 Campbell HallBerkeley, CA 94720-3411, USA email: blitz@astro.berkeley.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The molecular gas in galaxy disks shows much more galaxy to galaxy variation than does the atomic gas. Detailed studies show that this variation can be attributed to differences in hydrostatic pressure in the disks due largely to variations in the stellar surface density and the total gas surface density. One prediction of pressure modulated H2 formation is that the location where HI and H2 have equal surface densities occurs at a constant value of the stellar surface density in the disk. Observations confirm this constancy to 40%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, arXiv:0810.2541Google Scholar
Blitz, L. & Rosolowsky, E. 2004, ApJL, 612, L29CrossRefGoogle Scholar
Blitz, L. & Rosolowsky, E. 2006, ApJ, 650, 933CrossRefGoogle Scholar
de Blok, W. J. G. & Walter, F. 2006, AJ, 131, 363CrossRefGoogle Scholar
Elmegreen, B. G. 1993, ApJ, 411, 170CrossRefGoogle Scholar
Elmegreen, B. G. 1997, Revista Mexicana de Astronomia y Astrofisica Conference Series, 6, 165Google Scholar
Gil de Paz, A., et al. 2007, ApJS, 173, 185CrossRefGoogle Scholar
Helfer, T. T., Thornley, M. D., Regan, M. W., Wong, T., Sheth, K., Vogel, S. N., Blitz, L., & Bock, D. C.-J. 2003, ApJS, 145, 259CrossRefGoogle Scholar
Hunter, D. A., Elmegreen, B. G., & Baker, A. L. 1998, ApJ, 493, 595CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ARAA, 36, 189CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kennicutt, R. C. Jr., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, arXiv:0810.2556Google Scholar
Leroy, et al. 2009, AJ submittedGoogle Scholar
Martin, C. L. & Kennicutt, R. C. Jr., 2001, ApJ, 555, 301CrossRefGoogle Scholar
Robertson, B. E. & Kravtsov, A. V. 2008, ApJ, 680, 1083CrossRefGoogle Scholar
Schaye, J. 2004, ApJ, 609, 667CrossRefGoogle Scholar
Skillman, E. D. 1987, NASA Conference Publication, 2466, 263Google Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C. Jr., Thornley, M. D., & Leroy, A. K. 2008, arXiv:0810.2125Google Scholar
Wong, T. & Blitz, L. 2002, ApJ, 569, 157CrossRefGoogle Scholar
Wyse, R. F. G. 1986, ApJL, 311, L41CrossRefGoogle Scholar