Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T20:54:48.432Z Has data issue: false hasContentIssue false

Modelling the Disk (three-phase) Interstellar Medium

Published online by Cambridge University Press:  01 June 2008

Gerhard Hensler*
Affiliation:
Institute of Astronomy, University of Vienna, Türkenschanzstr. 17, 1180 Vienna, Austria email: hensler@astro.univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of galactic disks from their early stages is dominated by gas dynamical effects like gas infall, galactic fountains, and galactic outflows, and more. The influence of these processes is only understandable in the framework of diverse gas phases differing in their thermal energies, dynamics, and element abundances. To trace the temporal and chemical evolution of galactic disks, it is therefore essential to model the interstellar gasdynamics combined with stellar dynamics, the interactions between gas phases, and star-gas mass and energy exchanges as detailed as possible. This article reviews the potential of state-of-the-art numerical schemes like Smooth-Particle and grid-based hydrodynamics and their ingredients, such as star-formation criteria and feedback, energy deposit and metal enrichment by stars, and the influence of gas-phase interactions on the galactic gas dynamics and chemistry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Barnes, J. & Hut, P.Nature, 324, 446CrossRefGoogle Scholar
Benjamin, R. & Danly, L. 1997, ApJ, 481, 764CrossRefGoogle Scholar
Berczik, P., 1999, A&A, 348, 371Google Scholar
Berczik, P., Hensler, G., Theis, C., & Spurzem, R. 2003, Ap&SS, 284, 865Google Scholar
Berczik, P., Hensler, G., Theis, C., et al. 2009, A&A, submittedGoogle Scholar
Böhringer, H. & Hensler, G. 1989, A&A, 215, 147Google Scholar
Bouche, N., Cresci, G., Davies, R., et al. 2007, ApJ, 671, 303CrossRefGoogle Scholar
Bournaud, F., Elemegreen, B. G., & Elmegreen, D.M. 2007, ApJ, 670, 237CrossRefGoogle Scholar
Burkert, A. & Hensler, G. 1987, MNRAS, 225, 21pCrossRefGoogle Scholar
Burkert, A. & Hensler, G. 1988, A&A, 199, 131Google Scholar
Burkert, A., Truran, J., & Hensler, G. 1992, ApJ, 391, 651CrossRefGoogle Scholar
Cox, D.P., 2005, ARAA, 43, 337CrossRefGoogle Scholar
de Avillez, M. A. & Breitschwerdt, D. 2004, A&A, 425, 899Google Scholar
Dalla Vecchia, C. & Schaye, J. 2008, MNRAS, 387, 1431CrossRefGoogle Scholar
Ehlerova, S., Palous, J., Theis, C., & Hensler, G. 1997, A&A, 328, 111 1997, ApJ, 481Google Scholar
Elmegreen, B.G. 2002, ApJ, 577, 206CrossRefGoogle Scholar
Elmegreen, B. G. & Efremov, Y. N. 1997, ApJ, 480, 235CrossRefGoogle Scholar
Ferrière, K. M., 2001, Rev. Mod. Phys., 73, 1031CrossRefGoogle Scholar
Fraternali, P., van Moorsel, G., Sancisi, R., & Oosterloo, T.AJ, 123, 3124CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W., 2003, ApJ, 594, 888CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W., 2006, ApJ, 638, 262CrossRefGoogle Scholar
Fukuda, N. & Hanawa, T. 2000, ApJ, 533, 911CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M., 2004, A&A, 606, 271Google Scholar
Harfst, S., Theis, C., & Hensler, G. 2006, A&A, 499, 509Google Scholar
Hensler, G. 2003, ASP Conf. Ser. Vol., 304, eds. Charbonnel, C. et al. , p. 371Google Scholar
Hensler, G. 2007, EAS Publ. Ser. Vol., 24, eds. Ensellem, E. et al. , p. 113CrossRefGoogle Scholar
Hensler, G., Dickow, R., Junkes, N., & Gallagher, J.S. III. 1998, ApJ, 502, L17CrossRefGoogle Scholar
Hensler, G., Kppen, J., Pflamm, J., & Rieschick, A. 2004, IAU Symp. Ser. 217, eds. Duc, P.-A., Braine, J., Brinks, E., p. 178Google Scholar
Hensler, G. & Rieschick, A. 2002, ASP-CS, 285, 341Google Scholar
Hensler, G., Theis, Ch., & Gallagher, J. S. III. 2004, A&A, 426, 25Google Scholar
Heyer, M. H., Brunt, C., Snell, R. L., et al. 1996, ApJ, 464, L175CrossRefGoogle Scholar
Heyer, M. H., Corbell, E., Schneider, S. E., & Young, J.S., 2004, ApJ, 602, 723CrossRefGoogle Scholar
Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004, A&A, 413, 547Google Scholar
Kennicutt, R. J. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Keres, D., Katz, N., Weiberg, D. H., & Dave, , 2005, MNRAS, 363, 2CrossRefGoogle Scholar
Knauth, D. C., Meyer, D. M., & Lauroesch, J. T. 2006, ApJ, 647, L115CrossRefGoogle Scholar
Köppen, J. & Hensler, G. 2005, A&A, 434, 531Google Scholar
Köppen, J., Theis, C., & Hensler, G. 1995, A&A, 296, 99Google Scholar
Köppen, J., Theis, C., & Hensler, G. 1998, A&A, 328, 121Google Scholar
Krumholz, M. R. & McKee, C. F. 2005 ApJ, 630, 250CrossRefGoogle Scholar
Kravtsov, A. V. 2003, ApJ, 590, L1CrossRefGoogle Scholar
Larson, R. B. 1969, MNRAS, 145, 405CrossRefGoogle Scholar
Larson, R. B. 1974, MNRAS, 169, 229CrossRefGoogle Scholar
Larson, R. B. 1975, MNRAS, 173, 671CrossRefGoogle Scholar
Larson, R. B. 1976, MNRAS, 176, 31CrossRefGoogle Scholar
Lasker, B. M. 1967, ApJ, 149, 23CrossRefGoogle Scholar
Li, Y., MacLow, M.-M., & Klessen, R. S. 2005, ApJ, 626, 823CrossRefGoogle Scholar
MacLow, M.-M. & Klessen, R. S. 2004, Rev.Mod.Phys., 76, 125CrossRefGoogle Scholar
Martin, C. L., Kobulnicki, H. A., & Heckman, T. M. 2002, ApJ, 574, 663CrossRefGoogle Scholar
Mühle, S., Klein, U., Wilcots, E. M., & Hüttermeister, S. 2005, AJ, 130, 524CrossRefGoogle Scholar
Ostriker, E., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980CrossRefGoogle Scholar
Pipino, A., DErcole, A., & Matteucci, F. 2008, A&A, 484, 679Google Scholar
Rana, N. C. & Wilkinson, D. A. 1986, MNRAS, 218, 497CrossRefGoogle Scholar
Recchi, S. & Hensler, G. 2006a, A&A, 445, L39Google Scholar
Recchi, S. & Hensler, G. 2006b, Rev. Mod. Astronomy, 18, 164Google Scholar
Recchi, S. & Hensler, G. 2007, A&A, 476, 841Google Scholar
Recchi, S., Hensler, G., Angeretti, L., & Matteucci, F. 2006, A&A, 445, 875Google Scholar
Rieschick, A. & Hensler, G. 2000, ASP-CS, 215, 130Google Scholar
Samland, M. & Hensler, G. 1996, Rev. Mod. Astron., 9, 277Google Scholar
Samland, M., Hensler, G., & Theis, C. 1997, ApJ, 476, 544CrossRefGoogle Scholar
Samland, M. & Gerhard, O. 2003, A&A, 399, 961Google Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van der Hulst, T. 2008, A&A Rev, 15, 189Google Scholar
Scannapieco, C., Tissera, P. B., White, S. D. M, & Springel, V. 2006, MNRAS, 371, 1125CrossRefGoogle Scholar
Schaye, J. & Dalla Vecchia, C. 2008, MNRAS, 383, 1210CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243CrossRefGoogle Scholar
Semelin, B. & Combes, F. 2002, A&A, 388, 826Google Scholar
Slyz, A. D., Devriendt, J. E. G., Bryan, G., & Silk, J. 2005, MNRAS, 356, 737CrossRefGoogle Scholar
Springel, V. 2000, MNRAS, 312, 859CrossRefGoogle Scholar
Springel, V., Yoshida, N., & White, S. D. M. 2001, New Astron., 6, 79CrossRefGoogle Scholar
Stil, J. M. & Israel, F. P. 2002, A&A, 392, 473Google Scholar
Strickland, D. K., Heckman, T. M., Colbert, E. J. M., et al. 2004, ApJ, 606, 829CrossRefGoogle Scholar
Tasker, E. J. & Bryan, G. L. 2008, ApJ, 673, 810CrossRefGoogle Scholar
Thornton, K., Gaudlitz, M., Janka, H.-Th., & Steinmetz, M. 1998, ApJ, 500, 95CrossRefGoogle Scholar
Vieser, W. & Hensler, G. 2007, A&A, 472, 141Google Scholar
Wada, K. & Norman, C. A. 1999, ApJ, 516, L13CrossRefGoogle Scholar
Wada, K. & Norman, C. A. 2001, ApJ, 547, 172CrossRefGoogle Scholar
Wada, K. & Norman, C. A. 2007, ApJ, 660, 276CrossRefGoogle Scholar
Wise, J. H. & Abel, T. 2007, ApJ, 665, 899CrossRefGoogle Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 1995, ApJ, 453, 673CrossRefGoogle Scholar