Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T03:34:19.542Z Has data issue: false hasContentIssue false

Observability of the General Relativistic Precession of Periastra in Exoplanets

Published online by Cambridge University Press:  01 May 2008

Andrés Jordán
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA email: ajordan@cfa.harvard.edu, gbakos@cfa.harvard.edu Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
Gáspár Á. Bakos
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA email: ajordan@cfa.harvard.edu, gbakos@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The general relativistic precession rate of periastra in close-in exoplanets can be orders of magnitude larger than the magnitude of the same effect for Mercury. The realization that some of the close-in exoplanets have significant eccentricities raises the possibility that this precession might be detectable. We explore here the observability of the periastra precession using radial velocity and transit light curve observations. Our analysis is independent of the source of precession, which can also have significant contributions due to additional planets and tidal deformations. We find that precession of the periastra of the magnitude expected from general relativity can be detectable in timescales of ≲10 years with current observational capabilities by measuring the change in the primary transit duration or in the time difference between primary and secondary transits. Radial velocity curves alone would be able to detect this precession for super-massive, close-in exoplanets orbiting inactive stars if they have ~100 datapoints at each of two epochs separated by ~20 years. The contribution to the precession by tidal deformations may dominate the total precession in cases where the relativistic precession is detectable. Studies of transit durations with Kepler might need to take into account effects arising from the general relativistic and tidal induced precession of periastra for systems containing close-in, eccentric exoplanets. Such studies may be able to detect additional planets with masses comparable to that of Earth by detecting secular variations in the transit duration induced by the changing longitude of periastron.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567CrossRefGoogle Scholar
Butler, R. P., Wright, J. T., Marcy, G. W., Fischer, D. A., Vogt, S. S., Tinney, C. G., Jones, H. R. A., Carter, B. D., Johnson, J. A., McCarthy, C., & Penny, A. J. 2006, ApJ, 646, 505CrossRefGoogle Scholar
Charbonneau, D., Knutson, H. A., Barman, T., Allen, L. E., Mayor, M., Megeath, S. T., Queloz, D., & Udry, S. 2008, ArXiv e-prints arXiv:0802.0845Google Scholar
Claret, A. & Gimenez, A. 1992, A&AS, 96, 255Google Scholar
Deming, D., Harrington, J., Seager, S., & Richardson, L. J. 2006, ApJ, 644, 560CrossRefGoogle Scholar
Heyl, J. S. & Gladman, B. J. 2007, MNRAS, 377, 1511CrossRefGoogle Scholar
Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288CrossRefGoogle Scholar
Jordán, A. & Bakos, G. 2008, ApJ, in press (arXiv:0806.0630)Google Scholar
Miralda-Escudé, J. 2002, ApJ, 564, 1019CrossRefGoogle Scholar
Murray, C. D. & Dermott, S. F. 1999, Solar system dynamics (Cambridge: Cambridge University Press, 1999)Google Scholar
Pál, A. & Kocsis, B. 2008, MNRAS, in pressGoogle Scholar
Quataert, E. J., Kumar, P., & Ao, C. O. 1996, ApJ, 463, 284CrossRefGoogle Scholar
Smeyers, P. & Willems, B. 2001, A&A, 373, 173Google Scholar
Sterne, T. E. 1939, MNRAS, 99, 451CrossRefGoogle Scholar
Wu, Y. & Goldreich, P. 2002, ApJ, 564, 1024CrossRefGoogle Scholar