Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T20:41:04.043Z Has data issue: false hasContentIssue false

Measurements of Stellar Properties through Asteroseismology: A Tool for Planet Transit Studies

Published online by Cambridge University Press:  01 May 2008

Hans Kjeldsen
Affiliation:
Danish AsteroSeismology Centre, Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark email: hans@phys.au.dk and jcd@phys.au.dk
Timothy R. Bedding
Affiliation:
Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia email: bedding@physics.usyd.edu.au
Jørgen Christensen-Dalsgaard
Affiliation:
Danish AsteroSeismology Centre, Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark email: hans@phys.au.dk and jcd@phys.au.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Oscillations occur in stars of most masses and essentially all stages of evolution. Asteroseismology is the study of the frequencies and other properties of stellar oscillations, from which we can extract fundamental parameters such as density, mass, radius, age and rotation period. We present an overview of asteroseismic analysis methods, focusing on how this technique may be used as a tool to measure stellar properties relevant to planet transit studies. We also discuss details of the Kepler Asteroseismic Investigation – the use of asteroseismology on the Kepler mission in order to measure basic stellar parameters. We estimate that applying asteroseismology to stars observed by Kepler will allow the determination of stellar mean densities to an accuracy of 1%, radii to 2–3%, masses to 5%, and ages to 5–10% of the main-sequence lifetime. For rotating stars, the angle of inclination can also be determined.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Aerts, C., Christensen-Dalsgaard, J., Cunha, M., & Kurtz, D. W., 2008, Solar Phys., in the press [arXiv:0803.3527]Google Scholar
Arentoft, T., Kjeldsen, H., Bedding, T. R., et al. 2008, ApJ, in the pressGoogle Scholar
Bedding, T. R. & Kjeldsen, H. 2008, in: van Belle, G. (ed.), 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ASP Conf. Ser., Vol. 384 (San Francisco: ASP), 21Google Scholar
Bedding, T. R., Kjeldsen, H., Butler, R. P., et al. 2004, ApJ 614, 380CrossRefGoogle Scholar
Borucki, W. et al. 2008, these ProceedingsGoogle Scholar
Christensen-Dalsgaard, J. 1993, in: Brown, T. M. (ed.), Proc. GONG 1992: Seismic investigation of the Sun and stars, ASP Conf. Ser., Vol. 42 (San Francisco: ASP), 347Google Scholar
Christensen-Dalsgaard, J. 2004, Solar Phys. 220, 137CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Arentoft, T., Brown, T. M., Gilliland, R. L., Kjeldsen, H., Borucki, W. J., & Koch, D. 2007, Comm. in Asteroseismology 150, 350Google Scholar
Frandsen, S., Carrier, F., Aerts, C., et al. 2008, A&A 394, L5Google Scholar
García, R. A., Turck-Chièze, S., Boumier, P., et al. 2005, A&A 442, 385Google Scholar
Gizon, L. & Solanki, S. K. 2003, ApJ 589, 1009CrossRefGoogle Scholar
Kjeldsen, H., Bedding, T. R., Butler, R. P., et al. 2005, ApJ 635, 1281Google Scholar
Silvotti, R., Schuh, S., Janulis, R., et al. Nature 449, 189CrossRefGoogle Scholar
Ulrich, R. K., García, R. A., Robillot, J.-M. et al. 2000, A&A 364, 799Google Scholar