Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:07:50.941Z Has data issue: false hasContentIssue false

The NASA EPOXI mission of opportunity to gather ultraprecise photometry of known transiting exoplanets

Published online by Cambridge University Press:  01 May 2008

Jessie L. Christiansen
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: jchristi@cfa.harvard.edu
David Charbonneau
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: jchristi@cfa.harvard.edu
Michael F. A'Hearn
Affiliation:
University of Maryland, College Park, MD 20742, USA
Drake Deming
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Matthew J. Holman
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: jchristi@cfa.harvard.edu
Sarah Ballard
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: jchristi@cfa.harvard.edu
David T. F. Weldrake
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: jchristi@cfa.harvard.edu
Richard K. Barry
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Marc J. Kuchner
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Timothy A. Livengood
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Jeffrey Pedelty
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Alfred Schultz
Affiliation:
Goddard Space Flight Center, Greenbelt, MD 20771, USA
Tilak Hewagama
Affiliation:
University of Maryland, College Park, MD 20742, USA
Jessica M. Sunshine
Affiliation:
University of Maryland, College Park, MD 20742, USA
Dennis D. Wellnitz
Affiliation:
University of Maryland, College Park, MD 20742, USA
Don L. Hampton
Affiliation:
University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Carey M. Lisse
Affiliation:
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
Sara Seager
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02159, USA
Joseph F. Veverka
Affiliation:
Cornell University, Space Sciences Dept, Ithaca, NY 14853, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The NASA Discovery mission EPOXI, utilizing the Deep Impact flyby spacecraft, comprises two phases: EPOCh (Extrasolar Planet Observation and Characterization) and DIXI (Deep Impact eXtended Investigation). With EPOCh, we use the 30-cm high resolution visible imager to obtain ultraprecise photometric light curves of known transiting planet systems. We will analyze these data for evidence of additional planets, via transit timing variations or transits; for planetary moons or rings; for detection of secondary eclipses and the constraint of geometric planetary albedos; and for refinement of the system parameters. Over a period of four months, EPOCh observed four known transiting planet systems, with each system observed continuously for several weeks. Here we present an overview of EPOCh, including the spacecraft and science goals, and preliminary photometry results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567CrossRefGoogle Scholar
Barnes, J. W. & Fortney, J. J. 2005, ApJ, 616, 1193CrossRefGoogle Scholar
Borucki, W. J., et al. 2003, ProcSPIE, 4854, 129Google Scholar
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699CrossRefGoogle Scholar
Burke, C. J., et al. 2007, ApJ, 671, 2115CrossRefGoogle Scholar
Claret, A. 2000, A&A, 363, 1081Google Scholar
Croll, B., et al. 2007a, ApJ, 658, 1328CrossRefGoogle Scholar
Croll, B., et al. 2007b, ApJ, 671, 2129CrossRefGoogle Scholar
Deming, D., et al. 2007, AAS/Division for Planetary Sciences Meeting Abstracts, 39, 2202Google Scholar
Doyle, L. R. & Deeg, H. J. 2004, IAUS, 213, 80Google Scholar
Ford, E. 2005, AJ, 129, 1706CrossRefGoogle Scholar
Gillon, M., et al. 2007, A&A, 472, L13Google Scholar
Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288CrossRefGoogle Scholar
Holman, M. J., et al. 2006, ApJ, 652, 1715CrossRefGoogle Scholar
Johns-Krull, C. M., et al. 2008, ApJ, 677, 657CrossRefGoogle Scholar
Klaasen, K. P., Carcich, B., Grayzeck, E. J., & McLaughlin, S. 2005, Space Science Reviews, 117, 335CrossRefGoogle Scholar
Kovács, G., et al. 2007, ApJ, 670, L41CrossRefGoogle Scholar
Kurucz, R. 1994, Solar Abundance Model Atmospheres for 0, 1, 2, 4, and 8 km/s CD-ROM 19 (Smithsonian Astrophysical Observatory, Cambridge, MA, 1994)Google Scholar
Kurucz, R. 2005, Memorie Della Societa Astronomica Italiana Supplement, 8, 14Google Scholar
Mandel, K. & Agol, E. 2002, ApJ, 580, L171CrossRefGoogle Scholar
O'Donovan, F. T., et al. 2006, ApJL, 651, L61CrossRefGoogle Scholar
O'Donovan, F. T., et al. 2007, ApJL, 663, L37CrossRefGoogle Scholar
Pál, A., et al. 2008, ApJ, 680, 1450CrossRefGoogle Scholar
Pollacco, D., et al. 2008, MNRAS, 385, 1576CrossRefGoogle Scholar
Rowe, J. F., et al. 2006, ApJ, 646, 1241CrossRefGoogle Scholar