Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T14:31:05.409Z Has data issue: false hasContentIssue false

Tholins and their relevance for astrophysical issues

Published online by Cambridge University Press:  01 February 2008

E. Quirico
Affiliation:
Laboratoire de Planetologie de Grenoble, University Joseph Fourier CNRS, BP 53 38041 Grenoble Cedex 9, France email: eric.quirico@obs.ujf-grenoble.fr
C. Szopa
Affiliation:
Service d'Aeronomie, Universite Pierre et MarieCurie-Paris 6 et Universite de VersaillesReduit de Verrieres, Route des Gatines, 91371 Verrieres le Buisson, France
G. Cernogora
Affiliation:
Service d'Aeronomie, Universite Pierre et MarieCurie-Paris 6 et Universite de VersaillesReduit de Verrieres, Route des Gatines, 91371 Verrieres le Buisson, France
V. Lees
Affiliation:
Dept. of Chemistry and Materials Chemistry Centre, University College London, 20 Gordon Street, London WC1H 0AJGreat Britain
S. Derenne
Affiliation:
Laboratoire de Chimie Bioorganique et Organique Physique BioEMCo, Ecole Nationale Superieure de Chimie de Paris, 11, rue Pierre et Marie Curie 75231 Paris Cedex 05France
P. F. McMillan
Affiliation:
Dept. of Chemistry and Materials Chemistry Centre, University College London, 20 Gordon Street, London WC1H 0AJGreat Britain
G. Montagnac
Affiliation:
Laboratoire de Sciences de la Terre, Ecole Normale Superieure de Lyon, 46 allee d'Italie 69364 Lyon Cedex 7France
B. Reynard
Affiliation:
Laboratoire de Sciences de la Terre, Ecole Normale Superieure de Lyon, 46 allee d'Italie 69364 Lyon Cedex 7France
J-N Rouzaud
Affiliation:
Laboratoire de Geologie, Ecole Normale Superieure de Paris, 24 rue Lhomond 75231 Paris Cedex 5France
N. Fray
Affiliation:
Laboratoire Interuniversitaire des Systemes Atmospheriques, Universite Paris XII – Paris VII, 61 av. du Gal de Gaulle, 94010 Creteil cedex, France
P. Coll
Affiliation:
Laboratoire Interuniversitaire des Systemes Atmospheriques, Universite Paris XII – Paris VII, 61 av. du Gal de Gaulle, 94010 Creteil cedex, France
F. Raulin
Affiliation:
Laboratoire Interuniversitaire des Systemes Atmospheriques, Universite Paris XII – Paris VII, 61 av. du Gal de Gaulle, 94010 Creteil cedex, France
B. Schmitt
Affiliation:
Laboratoire de Planetologie de Grenoble, University Joseph Fourier CNRS, BP 53 38041 Grenoble Cedex 9, France email: eric.quirico@obs.ujf-grenoble.fr
B. Minard
Affiliation:
Chemistry Department, Pennsylvania State University, 104 Chemistry Building University Park, PA 16802United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tholins are polymeric hydrogenated carbon nitrides formed from N2:CH4 mixtures exposed to electrical discharges. They are complex disordered solids, and their structural chemistry and formation processes are not yet fully understood. Tholins have been widely adopted as useful analogs of reddish organic solids associated with planetary bodies or in interstellar space (e.g., Titan's aerosols, reddish surfaces of outer objects, interstellar organics, etc.) for fitting astronomical observations. However, there has been little evidence to date that they in fact constitute pertinent model materials, i. e. with chemical structure/composition similar to those presumed to be present in planetary or interstellar organic solids. In this contribution, we first review recent advances made regarding the determination of composition and structure of tholins produced in the laboratory. They point to a high chemical selectivity in the range of functional groups present, the control of unsaturation by nitrogen, and the highly disordered character of the structures. In a second section, we discuss the relationship between chemistry and the optical properties of tholins, and we point out the lack of a unique relationship between the shape and strength of the visible absorption bands and the chemical composition or structure of the model tholins. The tholins exhibit similarities with HCN “polymers”, that are suspected to be present in cometary refractory dust. This points to the existence of possible similar polymerisation processes, and it suggests they could also be used as analogs of N-rich cometary organics. Laboratory-based studies of cometary dust might offer new insights on the “chemical relevancy” of tholins, as combined micro-analytical techniques will allow direct comparison of chemical information between the materials produced. In a third section we present recent results pertaining to the search for such compounds in cometary grains (Stardust grains, interplanetary dust particles - IDPs). We show that some N-rich spots in stratospheric IDPs are rich in cyanide species, but no tholin-like compounds or polymeric HCN have been detected to date.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aleon, J., Robert, F., Chaussidon, M., & Marty, B. 2003, Geochim. Cosmochim. Acta, 67, 3773CrossRefGoogle Scholar
Bernard, J-M, Quirico, E., Brissaud, O., Montagnac, G., Reynard, B., McMillan, P. F., Coll, P., Nguyen, M-J, Raulin, F., & Schmitt B. 2006, Icarus, 185, 301CrossRefGoogle Scholar
Coll, P., Coscia, D., Gazeau, M-C, Guez, L., & Raulin, F. 1998, Origin of life and evolution of the biosphere, 28, 195213CrossRefGoogle Scholar
Cruikshank, D. P., Imanaka, , & Dalle Ore, C. M., 2005, Advances in Space Research, 36, 178183CrossRefGoogle Scholar
Daigo, Y. & Mutsukura, N. 2004, Diam. Rel. Mat., 13, 21702173CrossRefGoogle Scholar
de Bergh, C., Schmitt, B., Moroz, L. V., Quirico, E & Cruikshank, D. P. 2008, in The Solar System Beyond Neptune, 483–506Google Scholar
Derenne, S., Quirico, E., Szopa, C., Cernogora, G., Schmitt, B., Lees, V., & McMillan P. F. 2008, LPSC Meeting, Abstract 1391Google Scholar
Dobrica, E., Engrand, C., Quirico Montagnac, G., & Duprat, J. 2008, Meteor. and Plan. Sci., Meteoritical Society Meeting, Matsue, Japan, Abstract 50202Google Scholar
Ferrari, A. C., Rodil, S. E., & Robertson, J. 2003, Phys. Rev. B, 67, 155306CrossRefGoogle Scholar
Imanaka, H., Khare, B. N., Elsila, J. E., Bakes, E. L. O., McKay, C. P., Cruikshank, D. P., Sugita, S., Matsui, T., & Zare, R. N. 2004, Icarus, 168, 344CrossRefGoogle Scholar
Khare, B. N., Sagan, C., Thompson, W. R., Arakawa, E. T., Suits, F., Callcott, T. A., Williams, M. W., Shrader, S., Ogino, H., Willingham, M. W., & Nagy, B. 1984, Adv. Space Res., 4, 59CrossRefGoogle Scholar
Mutsukura, N. & Akita, K-I. 1999, Thin Solid Films, 349, 115119CrossRefGoogle Scholar
Quirico, E., Borg, J., Raynal, P-I, Montagnac, G., & d'Hendecourt, L. 2005, Plan. Spac. Sci., 53, 14431448CrossRefGoogle Scholar
Quirico, E., Montagnac, G., Lees, V., McMillan, P. F., Szopa, C., Cernogora, G., Rouzaud, J-N, Simon, P., Bernard, J-M, Coll, P., Fray, N., Minard, R. D., Raulin, F., Reynard, B., & Schmitt, B., Icarus, submittedGoogle Scholar
Sarker, N., Somogyi, A., Lunine, J., & Smith, M. A. 2003, Astrobiology, 3, 719CrossRefGoogle Scholar
Tran, B. N., Joseph, J. C., Ferris, J. P., Persans, P. D., & Chera, J. J. 2003, Icarus, 165, 379390CrossRefGoogle Scholar
Zhang, Z., Leinenweber, K., Bauer, M., Garvie, L. A., McMillan, P. F., & Wolf, G. H. 2004, J. Am. Chem. Soc., 123, 77887796CrossRefGoogle Scholar